Deciphering the Late Paleozoic–Cenozoic Tectonic History of the Inner Central Andes Forearc: An Update From the Salar de Punta Negra Basin of Northern Chile

Fernando Martínez1, Mauricio Parra2, Rodrigo González3, Cristopher López3, Patiño Ana2, Belén Muñoz4, Francisca Robledo5, Edward R. Sobel6, Johannes Glodny7
1Carrera de Geología, Facultad de Ingeniería, Universidad Andres Bello, Campus República, Chile
2Institute of Geosciences, University of Sao Paulo, Brazil
3Departamento de Ciencias Geológicas, FICG, Universidad Católica del Norte, Chile
4Departamento de Geología, FCFM, Universidad de Chile, Chile
5School of Geosciences, University of Aberdeen, United Kingdom
6Institute of Geosciences, University of Potsdam, Germany
7German Research Center for Geosciences (GFZ), Germany

Tóm tắt

We integrated new and existing geological, geochronological, thermochronological, and two-dimensional (2D) seismic data from the Salar de Punta Negra Basin to define the Late Paleozoic–Cenozoic tectonic evolution of the inner Andean forearc of northern Chile more precisely. Our results indicate that this region experienced early Late Paleozoic–Mesozoic crustal extension, creating several basement half-graben structures bounded by east- and west-dipping master faults. These extensional basins were filled by Upper Permian to Jurassic volcanic and sedimentary (continental and marine) syn-rift deposits. The genesis of these structures is related to the early breakup of the western Gondwana continent and the development of the large Tarapacá Basin in northern Chile and southern Perú. Subsequently, Late Cretaceous to Paleocene contraction occurred, which led to the tectonic inversion of the pre-existing rift system and the uplift of the Paleozoic–Mesozoic syn-rift deposits. Seismic data show that Upper Cretaceous and Paleocene synorogenic deposits accumulated along and over inversion anticlines, recording the initial contraction and marking the change from an extensional to a contractional tectonic setting. During the final episodes of basin inversion, crustal shortening was accommodated by the Eocene to recent basement reverse faulting accompanied by the rapid exhumation of basement pre-rift blocks, which served as the principal sources for the sediments that filled the pre-Andean basins during the Late Cenozoic. Finally, the exhumed basement pre-rift blocks and the reverse faults compartmentalized the contractional intermontane basins, which constitute the main low topographic relief of the inner forearc of northern Chile.

Từ khóa


Tài liệu tham khảo

Amilibia, 2008, The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: insights from the Cordillera de Domeyko, J. Struct. Geology., 30, 1520, 10.1016/j.jsg.2008.08.005

Arriagada, 2006, Salar de Atacama basin: A record of compressional tectonics in the central Andes since the mid-Cretaceous, Tectonics, 25, a, 10.1029/2004TC001770

Bahlburg, 1991, Paleozoic Evolution of Active Margin Basins in the Southern Central Andes (Northwestern Argentina and Northern Chile), J. South Am. Earth Sci., 4, 171, 10.1016/0895-9811(91)90029-k

Bally, 1984, Tectogenese et sismique reflexion, Bull. Soc.Géol. France, 279, 10.2113/gssgfbull.s7-xxvi.2.279

Bascuñán, 2016, Unraveling the Peruvian Phase of the Central Andes: stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30-23°S), northern Chile, Basin Res., 28, 365, 10.1111/bre.12114

Bascuñán, 2019, Geometry and late Mesozoic-Cenozoic evolution of the Salar de Atacama Basin (22°30′-24°30′S) in the northern Central Andes: New constraints from geophysical, geochronological and field data, Tectonophysics, 759, 58, 10.1016/j.tecto.2019.04.008

Breitkreuz, 1990, Late Carboniferous to Triassic Magmatism in the Central and Southern Andes: the Change from an Accretionary to an Erosive Plate Margin Mirrors the Pangea History, Symp Int Géodyn Andin, 359

Breitkreuz, 1991, Permo-Carboniferous Magmatism, basin Development, and Tectonics in the north Chilean Andes, XII Int. Congress Carboniferous andPermian Geology. Stratigr. Abstr., 17

Cecioni, 1975, Primera noticia sobre el hallazgo de Paleozoico inferior marino en la Sierra de Almeida, norte de Chile, Congr. Argent. Paleontol. Bioestrat., 1, 191

Charrier, 2007, Tectonostratigraphic Evolution of the Andean Orogen in Chile, ”in the Geology of Chile, 21, 10.1144/GOCH.3

Chong, 1973, Reconocimiento geológico del área Catalina-Sierra de Varas y estratigrafía del Jurásico del Profeta, provincial de Antofagasta. Memoria de prueba, 284

Cobbold, 1995, Seismic and Experimental Evidence for Thin-Skinned Horizontal Shortening by Convergent Radial Gliding on Evaporites, Deep-Water Santos Basin, Brazil” in Salt Tectonics: A Global Perspective, 305

Corti, 2012, Evolution and Characteristics of continental Rifting: Analog Modeling-Inspired View and Comparison with Examples from the East African Rift System, Tectonophysics, 1, 10.1016/j.tecto.2011.06.010

Corti, 2018, Control of Pre-rift Lithospheric Structure on the Architecture and Evolution of Continental Rifts: Insights from the Main Ethiopian Rift, East Africa, Tectonics, 37, 477, 10.1002/2017tc004799

Cristallini, 2004, True Three-Dimensional Trishear: A Kinematic Model for Strike-Slip and Oblique-Slip Deformation, GSA Bull., 116, 938, 10.1130/b25273.1

Dumitru, 1993, A New Computer-Automated Microscope Stage System for Fission-Track Analysis, Nuclear Tracks and Radiation MeasurementsNucl. Tracks Radiat. Measurements, 575

Erslev, 1991, Trishear Fault-Propagation Folding, Geol, 19, 617, 10.1130/0091-7613(1991)019<0617:tfpf>2.3.co;2

Espinoza, 2018, The Synrift Phase of the Early Domeyko Basin (Triassic, Northern Chile): Sedimentary, Volcanic, and Tectonic Interplay in the Evolution of an Ancient Subduction-Related Rift basin, Basin Res., 31, 4, 10.1111/bre.12305

Farley, 2002, U-Th)/He Dating: Techniques, Calibrations, and Applications, Rev. Mineralogy Geochem., 47, 819, 10.2138/rmg.2002.47.18

Farley, 1996, The Effects of Long Alpha-Stopping Distances on (U‐Th)/He Ages, Geochimica et Cosmochimica Acta, 60, 4223, 10.1016/s0016-7037(96)00193-7

Flint, 1993, Extensional tectonics in convergent margin basins: An example from the Salar de Atacama, Chilean Andes, GSA Bulletin105, 105, 603, 10.1130/0016-7606(1993)105<0603:eticmb>2.3.co;2

Flowers, 2009, Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model, Geochimica et Cosmochimica Acta, 73, 2347, 10.1016/j.gca.2009.01.015

Fuentes, 2018, Tectonic Architecture of the Tarapacá Basin in the Northern Central Andes: New Constraints from Field and 2D Seismic Data, Geosphere, 14, 2430, 10.1130/ges01697.1

Galbraith, 2005, Statistics for Fission Track Analysis, 10.1201/9781420034929

Gallagher, 2012, Uplift, Denudation, and Their Causes and Constraints over Geological Timescales, Regional Geology and Tectonics: Principles of Geologic Analysis, 608, 10.1016/B978-0-444-53042-4.00022-4

Gardeweg, 1994, Mapa Geológico del área de Imilac y Sierra Almeida, Región de Antofagasta, Serv. Nac. Geol. Min. Doc. Trab., 7

Giambiagi, 2009, Cinemática de apertura del sector norte de la cuenca neuquina, Rev. La. Asoc. Geológica Argentina, 65, 278

Gianni, 2019, Surface and Mantle Records Reveal an Ancient Slab Tear beneath Gondwana, Sci. Rep., 9, 19774, 10.1038/s41598-019-56335-9

Gianni, 2018, Cretaceous Orogeny and Marinetransgression in the Southern Central and Northern Patagonian Andes: Aftermath of a Large-Scaleflat-Subduction Event, The Evolution of the Chilean-Argentinean Andes, 279

Gleadow, 1981, A Natural Long-Term Track Annealing experiment for Apatite, Nucl. Tracks Radiat. Measurements, 5, 169, 10.1016/0191-278x(81)90039-1

Gleadow, 1986, Confined Fission Track Lengths in Apatite: A Diagnostic Tool for thermal History Analysis, Contr. Mineral. Petrol., 94, 405, 10.1007/bf00376334

González, 2015, Carta Sierra de Varas, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica No., 178

Henriquez, 2019, Cretaceous to middle Cenozoic exhumation history of the Cordillera de Domeyko and Salar de Atacama basin, northern Chile, Tectonics, 38, 395, 10.1029/2018TC005203

Horton, 2018, Tectonic Regimes of the central and Southern Andes: Responses to Variations in Plate Coupling during Subduction, Tectonics, 37, 402, 10.1002/2017tc004624

Hurford, 1983, The Zeta Age Calibration of Fission-Track Dating, Chem. Geology., 41, 285, 10.1016/s0009-2541(83)80026-6

Jaillard, 1996, Cretaceous to Early Paleogene Tectonic Evolution of the Northern Central Andes (0–18°S) and its Relations to Geodynamics, Tectonophysics, 259, 41, 10.1016/0040-1951(95)00107-7

Jordan, 2002, Active Faulting and Folding without Topographic Expression in an Evaporite basin, Chile, Geol. Soc. Am. Bull., 114, 1406, 10.1130/0016-7606(2002)114<1406:afafwt>2.0.co;2

Jordan, 2007, Cenozoic subsurface stratigraphy and structure of the Salar de Atacama basin, northern Chile, J. S. Am. Earth Sci., 23, 122, 10.1016/j.jsames.2006.09.024

Kay, 1989, Late Paleozoic to Jurassic Silicic Magmatism at the Gondwana Margin: Analogy to the Middle Proterozoic in North America, Geol, 17, 324, 10.1130/0091-7613(1989)017<0324:lptjsm>2.3.co;2

López, 2019, What Is the Structure of the Forearc Region in the Central Andes of Northern Chile? an Approach from Field Data and 2-D Reflection Seismic Data, Tectonophysics, 769, 228187, 10.1016/j.tecto.2019.228187

López, 2017, Zircon U-Pb Geochronology of the Mesozoic to Lower Cenozoic Rocks of the Coastal Cordillera in the Antofagasta Region (22°30′–23°00′S): Insights to the Andean Tectono-Magmatic Evolution, J. South. Am. Earth Sci., 87, 113, 10.1016/j.jsames.2017.11.005

Maksaev, 2014, Temporalidad del magmatismo del borde paleo-Pacífico de Gondwana: geocronología U-Pb de rocas ígneas del Paleozoico tardío a Mesozoico temprano de los Andes del norte de Chile entre los 20° y 31°S, Andgeo, 41, 447, 10.5027/andgeoV41n3-a01

Marinovic, 1995, Hoja Aguas Blancas, región de Antofagasta, Serv. Nac. Geol. Min. Doc. Trab., 70

Martínez, 2016, Tectonic Styles and Crustal Shortening of the Central Andes "Pampean" Flat-Slab Segment in Northern Chile (27-29°S), Tectonophysics, 667, 144, 10.1016/j.tecto.2015.11.019

Martínez, , Geometry and Development of a Hybrid Thrust belt in an Inner Forearc Setting: Insights from the Potrerillos Belt in the Central Andes, Northern Chile, J. South Am. Earth Sci., 98, 102439, 10.1016/j.jsames.2019.102439

Martínez, 2018, Tectonic Interaction between Mesozoic to Cenozoic Extensional and Contractional Structures in the Preandean Depression (23°-25°S): Geologic Implications for the Central Andes, Tectonophysics, 744, 333, 10.1016/j.tecto.2018.07.016

Martínez, , Effects of pre‐orogenic tectonic structures on the Cenozoic evolution of Andean deformed belts: Evidence from the Salar de Punta Negra Basin in the Central Andes of Northern Chile, Basin Res., 32, 1441, 10.1111/bre.12436

Martínez, 2019, Testing the occurrence of thick-skinned triangle zones in the central Andes forearc: example from the salar de Punta Negra basin in northern Chile, J. Struct. Geology., 120, 14, 10.1016/j.jsg.2018.12.009

McClay, 2002, 4-D Evolution of Rift Systems: Insights from Scaled Physical Models, AAPG Bull., 86, 935, 10.1306/61eedbf2-173e-11d7-8645000102c1865d

McKenzie, 1978, Some Remarks on the Development of Sedimentary Basins, Earth Planet. Sci. Lett., 40, 25, 10.1016/0012-821x(78)90071-7

Meesters, 2002, Solving the Production-Diffusion Equation for Finite Diffusion Domains of Various Shapes. Part I. Implications for Low-Temperature (U-Th)/He Thermochronology, Chem. Geol., 186, 333, 10.1016/s0009-2541(01)00422-3

Mégard, 1978, ÉtudeGeologiquedes Andes duPérouCentral.Contribution a L’etudegeologiquedes Andes N°1, Mémoire ORSTROM, 86, 310

Morandé, 2015, Carta Guaviña, Región de Tarapacá. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 177

Mpodozis, 2008, Tectónica jurásica en Argentina y Chile: Extensión, Subducción Oblicua, Rifting, Deriva y Colisiones, Rev. Geol. Argent., 63, 479

Mpodozis, 2005, Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, northern Chile: Implications for the tectonic evolution of the Cental Andes, Tectonophysics, 399, 125, 10.1016/j.tecto.2004.12.019

Mpodozis, 1990, Provincias magmáticas ácidas y evolución tectónica de Gondwana: Andes chilenos (28-31°S), Revista Geológica de Chile, 17, 153

Muñoz, 2002, Interactions between basement and cover during the evolution of the Salar de Atacama basin, northern Chile, Rev. Geol. Chile, 29, 55, 10.4067/s0716-02082002000100004

Niemeyer, 1997, Nuevos antecedentes estratigráficos y sedimentológicos de la Formación Zorritas, Devónico-Carbonífero de Sierra Almeida. Reg. Antofagasta, Chile, Rev. Geol. Chile, 24, 25

Pananont, 2004, Cenozoic evolution of the northwestern Salar de Atacama Basin, northern Chile, Tectonics, 23, a, 10.1029/2003TC001595

Ramos, 2009, Anatomy and Global Context of the Andes: Main Geologic Features and the Andean Orogenic Cycle, Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, 31, 10.1130/2009.1204(02)

Reiners, 2006, Using Thermochronology to Understand Orogenic Erosion, Annu. Rev. Earth Planet. Sci., 34, 419, 10.1146/annurev.earth.34.031405.125202

Rubilar, 2017, Structure of the Cordillera de la Sal: A key tectonic element for the Oligocene‐Neogene evolution of the Salar de Atacama basin, Central Andes, northern Chile, J. South Am. Earth Sci., 87, 200, 10.1016/j.jsames.2017.11.013

Rubinstein, 1997, Palynostratigraphy of the Zorritas Formation, Antofagasta Region, Chile: Insights on the Devonian/Carboniferous Boundary in Western Gondwana, Geosci. Front., 8, 493, 10.1016/j.gsf.2016.04.005

Semperé, 1997, Stratigraphy and Chronology of Upper Cretaceous-Lower Paleogene Strata in Bolivia and Northwest Argentina, Geol. Soc. América Bull., 109, 709, 10.1130/0016-7606(1997)109<0709:sacouc>2.3.co;2

Semperé, 2002, Late Permian-Middle Jurassic Lithospheric Thinning in Perú and Bolivia, and its Bearing on Andean-Age Tectonics, Tectonophysics, 345, 153, 10.1016/s0040-1951(01)00211-6

Sobel, 2010, Influence of Etching Conditions on Apatite Fission-Track Etch Pit Diameter, Chem. Geology., 271, 59, 10.1016/j.chemgeo.2009.12.012

Solari, 2017, Geología del área Imilac-Quebrada Guanaqueros, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Ser. Geol. Básic., 191

Soto, 2005, Using Gemorphological Markers to Discriminate Neogene Tectonic Activity in the Precordillera of North Chilean Forearc (24-25°S), Tectonophysics, 411, 41, 10.1016/j.tecto.2005.08.017

Steinman, 1929, Geologie von Peru, 448

Tankard, 1995, Structural and Tectonic Controls of basin Evolution in Southwestern Gondwana during the Phanerozoic, Petroleum Basins of South America, 5, 10.1306/M62593C1

Wernicke, 1981, Low-angle normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogeny, Geol. Soc., 113

Xiao, 1992, Origin of Rollover, Am. Assoc. Pet. Geologists Bull., 76, 509, 10.1306/bdff8ccc-1718-11d7-8645000102c1865d

Ziegler, 2004, Dynamic Processes Controlling Evolution of Rifted Basins, Earth-Science Rev., 64, 1, 10.1016/s0012-8252(03)00041-2