Giải mã ChitoCode: Chitin và chitosan từ nấm như các biopolymer chức năng

Springer Science and Business Media LLC - Tập 8 - Trang 1-8 - 2021
Stefan Cord-Landwehr1, Bruno M. Moerschbacher1
1Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany

Tóm tắt

Chitin và chitosan là hai trong số các biopolymer chức năng phổ biến và linh hoạt nhất, có hoạt tính sinh học thú vị và tính chất vật liệu vượt trội. Trong khi chitin là cổ đại về mặt tiến hóa và hiện diện trong nhiều sinh vật nhân thực ngoại trừ thực vật bậc cao và động vật có vú, sự phân bố tự nhiên của chitosan, tức là các dẫn xuất đã khử acetyl hóa nhiều của chitin, thì hạn chế hơn. Bằng chứng rõ ràng cho sự hiện diện của nó chỉ có được ở nấm, nơi chitosan được sản xuất từ chitin thông qua hoạt động của enzym chitin deacetylase. Tuy nhiên, hiện tại không có thông tin về chi tiết cấu trúc như tỷ lệ và mô hình acetyl hóa cũng như vai trò sinh lý của chitosan tự nhiên. Chúng tôi giả thuyết rằng các chitin deacetylase đang tạo ra chitin và chitosan với các mô hình acetyl hóa cụ thể và rằng chúng cung cấp thông tin cho sự tương tác với các protein gắn kết chitin và chitosan cụ thể. Những protein này có thể là các protein cấu trúc liên quan đến việc lắp ráp các ma trận phức tạp chứa chitin và chitosan như thành tế bào nấm và lớp biểu bì côn trùng, các enzym sửa đổi và phân giải chitin và chitosan như chitin deacetylase, chitinase và chitosanase, nhưng cũng có thể là các thụ thể nhận diện chitin và chitosan của hệ miễn dịch bẩm sinh ở thực vật, động vật và con người. Mô hình acetyl hóa, do đó, có thể tạo thành một loại ‘ChitoCode’, và chúng tôi tin rằng các công cụ phân tích mới trên in silico, in vitro và in situ cũng như các phương pháp tổng hợp mới trong công nghệ sinh học enzym và tổng hợp hữu cơ hiện đang cung cấp một cơ hội chưa từng có để giải mã mã này. Chúng tôi dự đoán sẽ có hiểu biết sâu sắc hơn về sinh học của các ma trận chứa chitin và chitosan, bao gồm tổng hợp, lắp ráp, khoáng hóa, phân hủy và cảm nhận của chúng. Điều này sẽ cải thiện công nghệ sinh học chitin và chitosan cũng như phát triển các sản phẩm và ứng dụng dựa trên chitin và chitosan đáng tin cậy, chẳng hạn như trong y tế và nông nghiệp, khoa học thực phẩm và thức ăn gia súc, cũng như mỹ phẩm và khoa học vật liệu.

Từ khóa


Tài liệu tham khảo

Broek LAM, Boeriu CG, editors. Chitin and Chitosan. Chichester, UK: Wiley; 2019. https://doi.org/10.1002/9781119450467. Wattjes J, Sreekumar S, Richter C, Cord-Landwehr S, Singh R, El Gueddari NE, et al. Patterns matter part 1: Chitosan polymers with non-random patterns of acetylation. React Funct Polym. 2020;151(Special issue: Chitosan for the future):104583. https://doi.org/10.1016/j.reactfunctpolym.2020.104583. Cord-Landwehr S, Richter C, Wattjes J, Sreekumar S, Singh R, Basa S, et al. Patterns matter part 2: Chitosan oligomers with defined patterns of acetylation. React Funct Polym. 2020;151(Special issue: Chitosan for the future):104577. https://doi.org/10.1016/j.reactfunctpolym.2020.104577. Cord-Landwehr S, Niehues A, Wattjes J, Moerschbacher BM. New developments in the analysis of partially acetylated chitosan polymers and oligomers. In: van den Broek LAM, Boeriu CG, editors. Chitin and Chitosan: properties and applications. Chichester, UK: Wiley; 2019. p. 81–95. https://doi.org/10.1002/9781119450467.ch4. Vårum KM, Anthonsen MW, Grasdalen H, Smidsrød O. 13C-N.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydr Res. 1991;217:19–27. https://doi.org/10.1016/0008-6215(91)84113-S. El Gueddari NE, Moerschbacher BM. A bioactivity matrix for chitosans as elicitors of disease resistance reactions in wheat. Adv Chitin Sci. 2004;VII:56–9. Weinhold MX, Sauvageau JCMM, Kumirska J, Thöming J. Studies on acetylation patterns of different chitosan preparations. Carbohydr Polym. 2009;78:678–84. https://doi.org/10.1016/j.carbpol.2009.06.001. Schatz C, Viton C, Delair T, Pichot C, Domard A. Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromol. 2003;4:641–8. https://doi.org/10.1021/bm025724c. Wattjes J, Sreekumar S, Niehues A, Mengoni T, Mendes ACL, Morris ER, et al. Biotechnology-derived chitosans with non-random patterns of acetylation differ from conventional chitosans in their properties and activities. ChemRxiv Prepr. 2021. https://doi.org/10.26434/chemrxiv.14356088.v1. Wattjes J, Niehues A, Cord-Landwehr S, Hoßbach J, David L, Delair T, et al. Enzymatic production and enzymatic-mass spectrometric fingerprinting analysis of chitosan polymers with different nonrandom patterns of acetylation. J Am Chem Soc. 2019;141:3137–45. https://doi.org/10.1021/jacs.8b12561. Mandon P, Prasad E. Chitosan Market by Source (Shrimp, Squid, Crab, Krill, and Others) and Application (Water Treatment, Biomedical & Pharmaceutical, Cosmetics, Food & Beverage, and Others): Global Opportunity Analysis and Industry Forecast, 2020–2027. 2020. https://www.alliedmarketresearch.com/chitosan-market. Yan N, Chen X. Sustainability: don’t waste seafood waste. Nature. 2015;524:155–7. https://doi.org/10.1038/524155a. Muñoz I, Rodríguez C, Gillet D, Moerschbacher BM. Life cycle assessment of chitosan production in India and Europe. Int J Life Cycle Assess. 2018;23:1151–60. https://doi.org/10.1007/s11367-017-1290-2. Ghormade V, Pathan EK, Deshpande MV. Can fungi compete with marine sources for chitosan production? Int J Biol Macromol. 2017;104:1415–21. https://doi.org/10.1016/j.ijbiomac.2017.01.112. Gow NARR, Latge J-P, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Am Soc Microbiol. 2017;5:267–92. https://doi.org/10.1128/9781555819583.ch12. Brown D. Method for Chitosan Production. WO 2015/085429 A1. 2015;39. Dhillon GS, Kaur S, Brar SK, Verma M. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol. 2013;33:379–403. https://doi.org/10.3109/07388551.2012.717217. El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB. Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol. 2002;156:103–12. https://doi.org/10.1046/j.1469-8137.2002.00487.x. Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol. 1968;22:87–108. https://doi.org/10.1146/annurev.mi.22.100168.000511. Davis LL, Bartnicki-Garcia S. Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochemistry. 1984;23:1065–73. https://doi.org/10.1021/bi00301a005. Basa S, Nampally M, Honorato T, Das SN, Podile AR, El Gueddari NE, et al. The pattern of acetylation defines the priming activity of chitosan tetramers. J Am Chem Soc. 2020;142:1975–86. https://doi.org/10.1021/jacs.9b11466. Hembach L, Cord-Landwehr S, Moerschbacher BM. Enzymatic production of all fourteen partially acetylated chitosan tetramers using different chitin deacetylases acting in forward or reverse mode. Sci Rep. 2017;7:17692. https://doi.org/10.1038/s41598-017-17950-6. Cord-Landwehr S, Melcher RLJ, Kolkenbrock S, Moerschbacher BM. A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Sci Rep. 2016;6:38018. https://doi.org/10.1038/srep38018. Noorifar N, Savoian M, Ram A, Lukito Y, Hassing B, Weikert T, et al. Chitin deacetylases are required for epichloë festucae endophytic cell wall remodelling during establishment of a mutualistic symbiotic interaction with Lolium perenne. Mol Plant Microbe Interact. 2021. https://doi.org/10.1094/MPMI-12-20-0347-R. Rizzi YS, Happel P, Lenz S, Urs MJ, Bonin M, Cord-Landwehr S, et al. Chitosan and chitin deacetylase activity are necessary for development and virulence of Ustilago maydis. MBio. 2021;12. https://doi.org/10.1128/mBio.03419-20. Horn SJ, Sikorski P, Cederkvist JB, Vaaje-Kolstad G, Sørlie M, Synstad B, et al. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc Natl Acad Sci. 2006;103:18089–94. https://doi.org/10.1073/pnas.0608909103. Vårum KM, Anthonsen MW, Grasdalen H, Smidsrød O. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydr Res. 1991;211:17–23. https://doi.org/10.1016/0008-6215(91)84142-2. Kumirska J, Weinhold MX, Steudte S, Thöming J, Brzozowski K, Stepnowski P. Determination of the pattern of acetylation of chitosan samples: comparison of evaluation methods and some validation parameters. Int J Biol Macromol. 2009;45:56–60. https://doi.org/10.1016/j.ijbiomac.2009.04.002. Cord-Landwehr S, Ihmor P, Niehues A, Luftmann H, Moerschbacher BM, Mormann M. Quantitative mass-spectrometric sequencing of chitosan oligomers revealing cleavage sites of chitosan hydrolases. Anal Chem. 2017;89:2893–900. https://doi.org/10.1021/acs.analchem.6b04183. Niehues A, Wattjes J, Bénéteau J, Rivera-Rodriguez GR, Moerschbacher BM. Chitosan analysis by enzymatic/mass spectrometric fingerprinting and in silico predictive modeling. Anal Chem. 2017;89:12602–8. https://doi.org/10.1021/acs.analchem.7b04002. Haebel S, Bahrke S, Peter MG. Quantitative sequencing of complex mixtures of heterochitooligosaccharides by vMALDI-linear ion trap mass spectrometry. Anal Chem. 2007;79:5557–66. https://doi.org/10.1021/ac062254u. Wattjes J, Niehues A, Moerschbacher BM. Robust enzymatic-mass spectrometric fingerprinting analysis of the fraction of acetylation of chitosans. Carbohydr Polym. 2020;231: 115684. https://doi.org/10.1016/j.carbpol.2019.115684. Mnatsakanyan M, Thevarajah JJ, Roi RS, Lauto A, Gaborieau M, Castignolles P. Separation of chitosan by degree of acetylation using simple free solution capillary electrophoresis. Anal Bioanal Chem. 2013;405:6873–7. https://doi.org/10.1007/s00216-013-7126-4. Thevarajah JJ, Van Leeuwen MP, Cottet H, Castignolles P, Gaborieau M. Determination of the distributions of degrees of acetylation of chitosan. Int J Biol Macromol. 2017;95:40–8. https://doi.org/10.1016/j.ijbiomac.2016.10.056. Gullion JD, Gullion T. Solid-state NMR study of the cicada wing. J Phys Chem B. 2017;121:7646–51. https://doi.org/10.1021/acs.jpcb.7b05598. Eddy S, Gullion T. Characterization of Insect Wing Membranes by 13 C CPMAS NMR. J Phys Chem C. 2021;125:931–6. https://doi.org/10.1021/acs.jpcc.0c08423. Ehren HL, Appels FVW, Houben K, Renault MAM, Wösten HAB, Baldus M. Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. Cell Surf. 2020;6: 100046. https://doi.org/10.1016/j.tcsw.2020.100046. Zhao W, Fernando LD, Kirui A, Deligey F, Wang T. Solid-state NMR of plant and fungal cell walls: a critical review. Solid State Nucl Magn Reson. 2020;107: 101660. https://doi.org/10.1016/j.ssnmr.2020.101660. Kang X, Kirui A, Muszyński A, Widanage MCD, Chen A, Azadi P, et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat Commun. 2018;9:2747. https://doi.org/10.1038/s41467-018-05199-0. Chrissian C, Lin CP-C, Camacho E, Casadevall A, Neiman AM, Stark RE. Unconventional constituents and shared molecular architecture of the melanized cell wall of C. neoformans and Spore Wall of S. cerevisiae. J Fungi. 2020;6:329. https://doi.org/10.3390/jof6040329. Henry C, Li J, Danion F, Alcazar-Fuoli L, Mellado E, Beau R, et al. Two KTR mannosyltransferases are responsible for the biosynthesis of cell wall mannans and control polarized growth in Aspergillus fumigatus. MBio. 2019;10. https://doi.org/10.1128/mBio.02647-18. Chakraborty A, Fernando LD, Fang W, DickwellaWidanage MC, Wei P, Jin C, et al. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat Commun. 2021;12:6346. https://doi.org/10.1038/s41467-021-26749-z. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. https://doi.org/10.1038/s41586-021-03819-2. Gubaeva E, Gubaev A, Melcher RLJ, Cord-Landwehr S, Singh R, El Gueddari NE, et al. ‘Slipped Sandwich’ model for chitin and chitosan perception in Arabidopsis. Mol Plant-Microbe Interact. 2018;31:1145–53. https://doi.org/10.1094/MPMI-04-18-0098-R54. Fuchs K, Cardona Gloria Y, Wolz O, Herster F, Sharma L, Dillen CA, et al. The fungal ligand chitin directly binds TLR2 and triggers inflammation dependent on oligomer size. EMBO Rep. 2018;19. https://doi.org/10.15252/embr.201846065. Gong B-Q, Wang F-Z, Li J-F. Hide-and-seek: chitin-triggered plant immunity and fungal counterstrategies. Trends Plant Sci. 2020;25:805–16. https://doi.org/10.1016/j.tplants.2020.03.006. Cheval C, Samwald S, Johnston MG, de Keijzer J, Breakspear A, Liu X, et al. Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proc Natl Acad Sci. 2020;117:9621–9. https://doi.org/10.1073/pnas.1907799117. Ziatabar S, Zepf J, Rich S, Danielson BT, Bollyky PI, Stern R. Chitin, chitinases, and chitin lectins: emerging roles in human pathophysiology. Pathophysiology. 2018;25:253–62. https://doi.org/10.1016/j.pathophys.2018.02.005. Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH. Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs. 2010;8:1482–517. https://doi.org/10.3390/md8051482. Bonin M, Sreekumar S, Cord-Landwehr S, Moerschbacher BM. Preparation of defined chitosan oligosaccharides using chitin deacetylases. Int J Mol Sci. 2020;21:7835. https://doi.org/10.3390/ijms21217835. Singh R, Weikert T, Basa S, Moerschbacher BM. Structural and biochemical insight into mode of action and subsite specificity of a chitosan degrading enzyme from Bacillus spec. MN. Sci Rep. 2019;9. Weikert T, Niehues A, Cord-Landwehr S, Hellmann MJ, Moerschbacher BM. Reassessment of chitosanase substrate specificities and classification. Nat Commun. 2017;8:1698. https://doi.org/10.1038/s41467-017-01667-1. Grifoll-Romero L, Pascual S, Aragunde H, Biarnés X, Planas A. Chitin deacetylases: structures, specificities, and biotech applications. Polymers (Basel). 2018;10:352. https://doi.org/10.3390/polym10040352. Andrés E, Albesa-Jové D, Biarnés X, Moerschbacher BM, Guerin ME, Planas A. Structural basis of chitin oligosaccharide deacetylation. Angew Chemie Int Ed. 2014;53:6882–7. https://doi.org/10.1002/anie.201400220. Vaaje-Kolstad G, Tuveng TR, Mekasha S, Eijsink VGH. Enzymes for modification of chitin and chitosan. In: van den Broek LAM, Boeriu CG, editors. Chitin and chitosan: properties and applications. Chichester, UK: Wiley; 2019. p. 189–228. Delbianco M, Kononov A, Poveda A, Yu Y, Diercks T, Jiménez-Barbero J, et al. Well-defined oligo- and polysaccharides as ideal probes for structural studies. J Am Chem Soc. 2018;140:5421–6. https://doi.org/10.1021/jacs.8b00254. Tyrikos-Ergas T, Bordoni V, Fittolani G, Chaube MA, Grafmüller A, Seeberger PH, et al. Systematic structural characterization of chitooligosaccharides enabled by automated glycan assembly. Chemistry. 2021;27:2321–5. El Gueddari NE, Schaaf A, Kohlhoff M, Gorzelanny C, Moerschbacher BM. Substrates and products of chitin and chitosan modifying enzymes. Adv Chitin Sci. 2007;X:119–26. Hembach L, Bonin M, Gorzelanny C, Moerschbacher BM. Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen Cryptococcus neoformans. Proc Natl Acad Sci. 2020;117:3551–9. https://doi.org/10.1073/pnas.1915798117. El Gueddari NE, Kolkenbrock S, Schaaf A, Chilukoti N, Brunel F, Gorzelanny C, et al. Chitin and chitosan modifying enzymes: versatile novel tools for the analysis of structure–function relationship of partially acetylaed chitosans. In: Filho SPC, Beppu MM, Fiamingo A, editors. Adv Chitin Sci. 2014; 40–7. van Leeuwe TM, Wattjes J, Niehues A, Forn-Cuní G, Geoffrion N, Mélida H, et al. A seven-membered cell wall related transglycosylase gene family in Aspergillus niger is relevant for cell wall integrity in cell wall mutants with reduced α-glucan or galactomannan. Cell Surf. 2020;6:100039. https://doi.org/10.1016/j.tcsw.2020.100039. Salgado-Lugo H, Sánchez-Arreguín A, Ruiz-Herrera J. Heterologous expression of an active chitin synthase from Rhizopus oryzae. Fungal Genet Biol. 2016;97:10–7. https://doi.org/10.1016/j.fgb.2016.10.005. Samain E, Drouillard S, Heyraud A, Driguez H, Geremia RA. Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr Res. 1997;302:35–42. https://doi.org/10.1016/S0008-6215(97)00107-9. Cottaz S, Samain E. Genetic engineering of Escherichia coli for the production of N I, NII-diacetylchitobiose (chitinbiose) and its utilization as a primer for the synthesis of complex carbohydrates. Metab Eng. 2005;7:311. Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol. 2017;37:11–25. https://doi.org/10.3109/07388551.2015.1104289. Kauss H, Jeblick W, Domard A. The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta. 1989;178:385–92. https://doi.org/10.1007/BF00391866. Raafat D, Sahl H-G. Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol. 2009;2:186–201. https://doi.org/10.1111/j.1751-7915.2008.00080.x. Raafat D, von Bargen K, Haas A, Sahl H-G. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol. 2008;74:3764–73. https://doi.org/10.1128/AEM.00453-08. Wang X, Zhao Y, Tan H, Chi N, Zhang Q, Du Y, et al. Characterisation of a chitinase from Pseudoalteromonas sp. DL-6, a marine psychrophilic bacterium. Int J Biol Macromol. 2014;70:455–62. https://doi.org/10.1016/j.ijbiomac.2014.07.033. Hadwiger LA. Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci. 2013;208:42–9. https://doi.org/10.1016/j.plantsci.2013.03.007. Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. Molecular mechanisms of chitosan interactions with fungi and plants. Int J Mol Sci. 2019;20:332. https://doi.org/10.3390/ijms20020332. Rinaudo M. Chitin and chitosan: properties and applications. Elsevier. 2007. https://doi.org/10.1016/j.progpolymsci.2006.06.001. Peter MG. Chitin and Chitosan in Fungi. In: Vandamme EJ, De Baets S, Steinbüchel A, editors. Biopolymers Online. Wiley; 2002. https://doi.org/10.1002/3527600035.bpol6005. Peter MG. Chitin and chitosan from animal sources. In: Vandamme EJ, De Baets S, Steinbüchel A, editors. Biopolymers online. Wiley; 2002. https://doi.org/10.1002/3527600035.bpol6015. Fernando LD, Dickwella Widanage MC, Penfield J, Lipton AS, Washton N, Latgé J-P, et al. Structural polymorphism of chitin and chitosan in fungal cell walls from solid-state nmr and principal component analysis. Front Mol Biosci. 2021;8. https://doi.org/10.3389/fmolb.2021.727053. Einbu A, Vårum KM. Characterization of chitin and its hydrolysis to GlcNAc and GlcN. Biomacromol. 2008;9:1870–5. https://doi.org/10.1021/bm8001123.