Decentralized personalized federated learning: Lower bounds and optimal algorithm for all personalization modes
Tài liệu tham khảo
Katyusha, 2017, The first direct acceleration of stochastic gradient methods, J. Mach. Learn. Res., 18, 8194
Jr, 1985, Eigenvalues of the laplacian of a graph, Linear Multilinear Algebra, 18, 141, 10.1080/03081088508817681
Beznosikov
Boyd, 2006, Randomized gossip algorithms, IEEE Trans. Inf. Theory, 52, 2508, 10.1109/TIT.2006.874516
Chang, 2011, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol., 2, 10.1145/1961189.1961199
Gasnikov
Gorbunov
Hanzely
Hanzely
Hanzely
Hanzely, 2021
Hendrikx
Johnson, 2013, Accelerating stochastic gradient descent using predictive variance reduction
Kairouz, 2021, Advances and open problems in federated learning, Found. Trends Mach. Learn., 14, 1, 10.1561/2200000083
Konečnỳ
Kulkarni, 2020, Survey of personalization techniques for federated learning, 794
Li, 2020, Decentralized accelerated gradient methods with increasing penalty parameters, IEEE Trans. Signal Process., 68, 4855, 10.1109/TSP.2020.3018317
McMahan, 2017, Communication-efficient learning of deep networks from decentralized data, 1273
Nedic, 2009, Distributed subgradient methods for multi-agent optimization, IEEE Trans. Autom. Control, 54, 48, 10.1109/TAC.2008.2009515
Nesterov, 2003
Scaman
Shalev-Shwartz, 2014
Smith
Tominin
Wang
Wang