Decentralized adaptive resource-aware computation offloading & caching for multi-access edge computing networks

Sustainable Computing: Informatics and Systems - Tập 30 - Trang 100555 - 2021
Getenet Tefera1, Kun She1, Maya Shelke2, Awais Ahmed1
1School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
2Department of Computer Science and Information Technology, Symbiosis International University, Pune, India

Tài liệu tham khảo

Chen, 2015, Efficient multi-user computation offloading for mobile-edge cloud computing, IEEE/ACM Trans. Netw., 24, 2795, 10.1109/TNET.2015.2487344 Chen, 2014, Decentralized computation offloading game for mobile cloud computing, IEEE Trans. Parallel Distrib. Syst., 26, 974, 10.1109/TPDS.2014.2316834 Chen, 2018, Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning, IEEE Internet Things J., 6, 4005, 10.1109/JIOT.2018.2876279 Fooladivanda, 2012, Joint resource allocation and user association for heterogeneous wireless cellular networks, IEEE Trans. Wireless Commun., 12, 248, 10.1109/TWC.2012.121112.120018 He, 2017, Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach, IEEE Trans. Veh. Technol., 67, 44, 10.1109/TVT.2017.2760281 El-Sayed, 2017, Edge of things: the big picture on the integration of edge, IoT and the cloud in a distributed computing environment, IEEE Access, 6, 1706, 10.1109/ACCESS.2017.2780087 Cao, 2019, Intelligent offloading in multi-access edge computing: a state-of-the-art review and framework, IEEE Commun. Mag., 57, 56, 10.1109/MCOM.2019.1800608 Xu, 2017, Online learning for offloading and autoscaling in energy harvesting mobile edge computing, IEEE Trans. Cognit. Commun. Netw., 3, 361, 10.1109/TCCN.2017.2725277 Zheng, 2018, Dynamic computation offloading for mobile cloud computing: a stochastic game-theoretic approach, IEEE Trans. Mob. Comput., 18, 771, 10.1109/TMC.2018.2847337 Cao, 2017, Distributed multiuser computation offloading for cloudlet-based mobile cloud computing: a game-theoretic machine learning approach, IEEE Trans. Veh. Technol., 67, 752, 10.1109/TVT.2017.2740724 Min, 2019, Learning-based computation offloading for IoT devices with energy harvesting, IEEE Trans. Veh. Technol., 68, 1930, 10.1109/TVT.2018.2890685 Hu, 2018, Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning, IEEE Trans. Veh. Technol., 67, 10190, 10.1109/TVT.2018.2867191 Wang, 2019, In-edge ai: intelligentizing mobile edge computing, caching and communication by federated learning, IEEE Network, 33, 156, 10.1109/MNET.2019.1800286 Wang, 2018, Traffic and computation co-offloading with reinforcement learning in fog computing for industrial applications, IEEE Trans. Ind. Inf., 15, 976, 10.1109/TII.2018.2883991 Bouet, 2018, Mobile edge computing resources optimization: a geo-clustering approach, IEEE Trans. Netw. Serv. Manage., 15, 787, 10.1109/TNSM.2018.2816263 Yu, 2018, Computation offloading with data caching enhancement for mobile edge computing, IEEE Trans. Veh. Technol., 67, 11098, 10.1109/TVT.2018.2869144 Taleb, 2017, On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration, IEEE Commun. Surv. Tutorials, 19, 1657, 10.1109/COMST.2017.2705720 Alameddine, 2019, Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing, IEEE J. Sel. Areas Commun., 37, 668, 10.1109/JSAC.2019.2894306 Guo, 2018, Collaborative computation offloading for multiaccess edge computing over fiber–wireless networks, IEEE Trans. Veh. Technol., 67, 4514, 10.1109/TVT.2018.2790421 Moura, 2018, Game theory for multi-access edge computing: survey, use cases, and future trends, IEEE Commun. Surv. Tutorials, 21, 260, 10.1109/COMST.2018.2863030 Wang, 2019, Smart resource allocation for mobile edge computing: a deep reinforcement learning approach, IEEE Trans. Emerging Top. Comput. Wei, 2018, Dynamic edge computation offloading for internet of things with energy harvesting: a learning method, IEEE Internet Things J., 6, 4436, 10.1109/JIOT.2018.2882783 Asheralieva, 2019, Hierarchical game-theoretic and reinforcement learning framework for computational offloading in UAV-enabled mobile edge computing networks with multiple service providers, IEEE Internet Things J., 6, 8753, 10.1109/JIOT.2019.2923702 Qi, 2019, Knowledge-driven service offloading decision for vehicular edge computing: a deep reinforcement learning approach, IEEE Trans. Veh. Technol., 68, 4192, 10.1109/TVT.2019.2894437 Dinh, 2018, Learning for computation offloading in mobile edge computing, IEEE Trans. Commun., 66, 6353, 10.1109/TCOMM.2018.2866572 Liu, 2017, eNB selection for machine type communications using reinforcement learning based Markov decision process, IEEE Trans. Veh. Technol., 66, 11330, 10.1109/TVT.2017.2730230 Tefera, 2020, Congestion-aware adaptive decentralised computation offloading and caching for multi-access edge computing networks, IET Commun., 14, 3410, 10.1049/iet-com.2020.0630 Qiu, 2019, Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing, IEEE Trans. Veh. Technol., 68, 8050, 10.1109/TVT.2019.2924015 Munir, 2019, When edge computing meets microgrid: a deep reinforcement learning approach, IEEE Internet Things J., 6, 7360, 10.1109/JIOT.2019.2899673 Wang, 2019, Computation offloading in multi-access edge computing using a deep sequential model based on reinforcement learning, IEEE Commun. Mag., 57, 64, 10.1109/MCOM.2019.1800971 Cheng, 2018, Localized small cell caching: a machine learning approach based on rating data, IEEE Trans. Commun., 67, 1663, 10.1109/TCOMM.2018.2878231 Yang, 2018, Multi-access edge computing enhanced video streaming: proof-of-concept implementation and prediction/QoE models, IEEE Trans. Veh. Technol., 68, 1888, 10.1109/TVT.2018.2889196 Lien, 2018, Low latency radio access in 3GPP local area data networks for V2X: stochastic optimization and learning, IEEE Internet Things J., 6, 4867, 10.1109/JIOT.2018.2874883 Ning, 2019, Deep reinforcement learning for intelligent internet of vehicles: an energy-efficient computational offloading scheme, IEEE Trans. Cognit. Commun. Netw., 5, 1060, 10.1109/TCCN.2019.2930521 Chen, 2019, iRAF: a deep reinforcement learning approach for collaborative mobile edge computing IoT networks, IEEE Internet Things J., 6, 7011, 10.1109/JIOT.2019.2913162 Wang, 2019, Resource allocation in information-centric wireless networking with D2D-enabled MEC: a deep reinforcement learning approach, IEEE Access, 7, 114935, 10.1109/ACCESS.2019.2935545 Kropp, 2019, Demonstration of a 5G multi-access edge cloud enabled smart sorting machine for industry 4.0, 1 Thar, 2019, A deep learning model generation framework for virtualized multi-access edge cache management, IEEE Access, 7, 62734, 10.1109/ACCESS.2019.2916080 Pham, 2019, Coalitional games for computation offloading in NOMA-enabled multi-access Edge computing, IEEE Trans. Veh. Technol. Nassar, 2019, Reinforcement learning for adaptive resource allocation in fog RAN for IoT with heterogeneous latency requirements, IEEE Access, 7, 128014, 10.1109/ACCESS.2019.2939735 Lei, 2019, Multiuser resource control with deep reinforcement learning in IoT edge computing, IEEE Internet Things J., 6, 10119, 10.1109/JIOT.2019.2935543 Wang, 2020, A game-based computation offloading method in vehicular multi-access edge computing networks, IEEE Internet Things J. Tefera, 2019, Resource-aware decentralized adaptive computational offloading & task-caching for multi-access Edge computing, 39 Tefera, 2019, Decentralized adaptive latency-aware cloud-edge-dew architecture for unreliable network, 142