Decentralized Construction of Knowledge Graphs for Deep Recommender Systems Based on Blockchain-Powered Smart Contracts

IEEE Access - Tập 7 - Trang 136951-136961 - 2019
Shuai Wang1, Chenchen Huang1, Juanjuan Li2, Yong Yuan2, Fei‐Yue Wang1
1University of Chinese Academy of Sciences, Beijing, China
2Qingdao Academy of Intelligent Industries, Qingdao, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/TCYB.2016.2602498

tian, 2017, A simpler bitcoin voting protocol, Proc Int Conf Inf Security Cryptol, 81

10.1145/2939672.2939673

10.1109/ACCESS.2018.2874959

10.1145/3178876.3186175

10.1109/ACCESS.2019.2901544

lin, 2015, Learning entity and relation embeddings for knowledge graph completion, Proc 29th AAAI Conf Artif Intell, 2181

wang, 2014, Knowledge graph embedding by translating on hyperplanes, Proc 28th AAAI Conf Artif Intell, 1112

bordes, 2013, Translating embeddings for modeling multi-relational data, Proc Adv Neural Inf Process Syst, 2787

10.1109/TCYB.2018.2860284

10.1017/S1351324917000109

10.6028/NIST.IR.8008

10.1145/2463676.2465297

howe, 2006, The rise of crowdsourcing, Wired Mag, 14, 1

10.1109/TCSS.2019.2909137

10.1109/TSMC.2018.2854904

10.1109/ACCESS.2018.2851611

10.1109/TSMC.2019.2895123

10.1109/TCSS.2019.2913165

10.1007/s10462-017-9539-5

liu, 2019, Review and trend analysis of knowledge graphs for crop pest and diseases, IEEE Access, 7, 62251, 10.1109/ACCESS.2019.2915987

10.1145/3178876.3186158

10.1007/s10462-019-09692-w

fabian, 2007, A core of semantic knowledge unifying WordNet and Wikipedia, Proc 16th Int World Wide Web Conf, 697

10.1155/2015/380472

yang, 2018, Accurate and efficient method for constructing domain knowledge graph, J Softw, 29, 2931

10.1109/ACCESS.2019.2920734

qiao, 2016, Knowledge graph construction techniques, J Comput Res Develop, 53, 582

10.1109/WICSA.2016.21

10.3115/v1/N15-1118

10.3233/SW-160218

bashir, 2018, Mastering Blockchain

10.1145/2988450.2988454

10.1109/ACCESS.2018.2880197

10.1145/2959100.2959190

dacrema, 2019, Are we really making much progress? A worrying analysis of recent neural recommendation approaches, arXiv 1907 06902

10.1145/3109859.3109878

10.1145/2740908.2742726