Decay of Skin-Specific Gene Modules in Pangolins

Bernardo Bollen Pinto1, Raúl Valente1, Filipe Caramelo1, Raquel Ruivo1, L. Filipe C. Castro1
1CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal

Tóm tắt

AbstractThe mammalian skin exhibits a rich spectrum of evolutionary adaptations. The pilosebaceous unit, composed of the hair shaft, follicle, and the sebaceous gland, is the most striking synapomorphy. The evolutionary diversification of mammals across different ecological niches was paralleled by the appearance of an ample variety of skin modifications. Pangolins, order Pholidota, exhibit keratin-derived scales, one of the most iconic skin appendages. This formidable armor is intended to serve as a deterrent against predators. Surprisingly, while pangolins have hair on their abdomens, the occurrence of sebaceous and sweat glands is contentious. Here, we explore various molecular modules of skin physiology in four pangolin genomes, including that of sebum production. We show that genes driving wax monoester formation, Awat1/2, show patterns of inactivation in the stem pangolin branch, while the triacylglycerol synthesis gene Dgat2l6 seems independently eroded in the African and Asian clades. In contrast, Elovl3 implicated in the formation of specific neutral lipids required for skin barrier function is intact and expressed in the pangolin skin. An extended comparative analysis shows that genes involved in skin pathogen defense and structural integrity of keratinocyte layers also show inactivating mutations: associated with both ancestral and independent pseudogenization events. Finally, we deduce that the suggested absence of sweat glands is not paralleled by the inactivation of the ATP-binding cassette transporter Abcc11, as previously described in Cetacea. Our findings reveal the sophisticated and complex history of gene retention and loss as key mechanisms in the evolution of the highly modified mammalian skin phenotypes.

Từ khóa


Tài liệu tham khảo

Alves LQ, Ruivo R, Fonseca MM, Lopes-Marques MO, Ribeiro P, Castro LFC (2020) PseudoChecker: an integrated online platform for gene inactivation inference. Nucleic Acids Res 48:321–331. https://doi.org/10.1093/nar/gkaa408

Alves LQ, Ruivo R, Valente R, Fonseca MM, Machado AM, Plön S, Monteiro N, García-Parraga D, Ruiz-Díaz S, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Castro LFC (2021) A drastic shift in the energetic landscape of toothed whale sperm cells. Curr Biol 31:3648–3655. https://doi.org/10.1016/j.cub.2021.05.062

Bell RM, Coleman RA (1980) Enzymes of glycerolipid synthesis in eukaryotes. Ann Rev Biochem 49:459–487

Broz P, Pelegrín P (2019) Shao F (2019) The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 20:3. https://doi.org/10.1038/s41577-019-0228-2

Cai Z, Deng X, Jia J, Wang D, Yuan G (2021) Ectodysplasin A/ectodysplasin a receptor system and their roles in multiple diseases. Front Physiol. https://doi.org/10.3389/fphys.2021.788411

Campbell G, Swamynathan S, Tiwari A, Swamynathan SK (2019) The secreted Ly-6/uPAR related protein-1 (SLURP1) stabilizes epithelial cell junctions and suppresses TNF-α-induced cytokine production. Biochem Biophys Res Commun 517:729–734. https://doi.org/10.1016/j.bbrc.2019.07.123

Carneiro M, Vieillard J, Andrade P, Boucher S, Afonso S, Blanco-Aguiar JA, Santos N, Branco J, Esteves PJ, Ferrand N, Kullander K, Andersson L (2021) A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits. PLoS Genet. https://doi.org/10.1371/journal.pgen.1009429

Castro LFC, Gonçalves O, Mazan S, Tay BH, Venkatesh B, Wilson JM (2014) Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history. Proc R Soc B. https://doi.org/10.1098/rspb.2013.2669

Choo SW, Rayko M, Tan TK, Hari R, Komissarov A, Wee WY, Yurchenko AA, Kliver S, Tamazian G, Antunes A, Wilson RK, Warren WC, Koepfli KP, Minx P, Krasheninnikova K, Kotze A, Dalton DL, Vermaak E, Paterson IC, Dobrynin P, Sitam FT, Rovie-Ryan JJ, Johnson WE, Yusoff AM, Luo SJ, Karuppannan KV, Fang G, Zheng D, Gerstein MB, Lipovich L, O’Brien SJ, Wong GJ (2016) Pangolin genomes and the evolution of mammalian scales and immunity. Genome Res 26(1312):1322. https://doi.org/10.1101/gr.203521.115

Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, Sullivan PF, Hindle AG, Andrews G, Armstrong JC, Bianchi M, Breit AM, Diekhans M, Fanter C, Foley NM, Goodman DB, Goodman L, Keough KC, Kirilenko B, Kowalczyk A, Lawless C, Lind AL, Meadows JRS, Moreira LR, Redlich RW, Ryan L, Swofford R, Valenzuela A, Wagner F, Wallerman O, Brown AR, Damas J, Fan K, Gatesy J, Grimshaw J, Johnson J, Kozyrev SV, Lawler AJ, Marinescu VD, Morrill KM, Osmanski A, Paulat NS, Phan BN, Reilly SK, Schäffer DE, Steiner C, Supple MA, Wilder AP, Wirthlin ME, Xue JR; Zoonomia Consortium§; Birren BW, Gazal S, Hubley RM, Koepfli KP, Marques-Bonet T, Meyer WK, Nweeia M, Sabeti PC, Shapiro B, Smit AFA, Springer MS, Teeling EC, Weng Z, Hiller M, Levesque DL, Lewin HA, Murphy WJ, Navarro A, Paten B, Pollard KS, Ray DA, Ruf I, Ryder OA, Pfenning AR, Lindblad-Toh K, Karlsson EK, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X (2023) Evolutionary constraint and innovation across hundreds of placental mammals Science 380:3943 https://doi.org/10.1126/science.abn3943

De Schutter E, Roelandt R, Riquet FB, van Camp G, Wullaert A, Vandenabeele P (2021) Punching holes in cellular membranes: biology and evolution of gasdermins. Trends Cell Biol 31:500–513. https://doi.org/10.1016/j.tcb.2021.03.004

Ehrlich F, Laggner M, Langbein L, Burger P, Pollreisz A, Tschachler E, Eckhart L (2019) Comparative genomics suggests loss of keratin K24 in three evolutionary lineages of mammals. Sci Rep 9:10924. https://doi.org/10.1038/s41598-019-47422-y

Eisinger M, Li WH, Anthonavage M, Pappas A, Zhang L, Rossetti D, Huang QL, Seiberg M (2011) A melanocortin receptor 1 and 5 antagonist inhibits sebaceous gland differentiation and the production of sebum-specific lipids. J Dermatol Sci 63:23–32. https://doi.org/10.1016/j.jdermsci.2011.04.001

Ferrández-Roldán A, Fabregà-Torrus M, Sánchez-Serna G, Duran-Bello E, Joaquín-Lluís M, Bujosa P, Plana-Carmona M, Garcia-Fernàndez J, Albalat R, Cañestro C (2021) Cardiopharyngeal deconstruction and ancestral tunicate sessility. Nature 599:431–435. https://doi.org/10.1038/s41586-021-04041-w

Fischer J, Bouadjar B, Heilig R, Huber M, Lefèvre C, Jobard F, Macari F, Bakija-Konsuo A, Ait-Belkacem F, Weissenbach J, Lathrop M, Hohl D, Prud’homme JF, (2001) Mutations in the gene encoding SLURP-1 in Mal de Meleda. Hum Mol Genet 10:875–880. https://doi.org/10.1093/hmg/10.8.875

Fischer H, Tschachler E, Eckhart L (2020) Cytosolic DNA sensing through cGAS and STING is inactivated by gene mutations in pangolins. Apoptosis 25:474–480. https://doi.org/10.1007/s10495-020-01614-4

Font-Porterias N, McNelis MG, Comas D, Hlusko LJ (2022) Evidence of selection in the ectodysplasin pathway among endangered aquatic mammals. Integrative Organismal Biology. https://doi.org/10.1093/iob/obac018

Fuchs P, Drexler C, Ratajczyk S, Eckhart L (2022) Comparative genomics reveals evolutionary loss of epiplakin in cetaceans. Sci Rep 12:1–9. https://doi.org/10.1038/s41598-022-05087-0

Gaubert P, Antunes A, Meng H, Miao L, Peigné S, Justy F, Njiokou F, Dufour S, Danquah E, Alahakoon J, Verheyen E, Stanley WT, O’Brien SJ, Johnson WE, Luo S (2018) The complete phylogeny of pangolins: scaling up resources for the molecular tracing of the most trafficked mammals on earth. J Hered 109:347–359. https://doi.org/10.1093/jhered/esx097

Graham AR (2005) Histological examination of the florida manatee (Trichecus manatus latirostris) INTEGUMENT. Gainesville, Florida

Haley PJ (2022) From bats to pangolins: new insights into species differences in the structure and function of the immune system. Innate Immun 28:107–121. https://doi.org/10.1177/17534259221093120

Holmes RS (2010) Comparative genomics and proteomics of vertebrate diacylglycerol acyltransferase (DGAT), acyl CoA wax alcohol acyltransferase (AWAT) and monoacylglycerol acyltransferase (MGAT). Comp Biochem Physiol Part D Genomics Proteomics 5:45–54. https://doi.org/10.1016/j.cbd.2009.09.004

Holthaus KB, Lachner J, Ebner B, Tschachler E, Eckhart L (2021) Gene duplications and gene loss in the epidermal differentiation complex during the evolutionary land-to-water transition of cetaceans. Sci Rep 11:1–9. https://doi.org/10.1038/s41598-021-91863-3

Huang LY, Li ST, Lin SC, Kao CH, Hong CH, Lee CH, Yang LT (2023) Gasdermin a is required for epidermal cornification during skin barrier regeneration and in an atopic dermatitis-like model. J Invest Dermatol. https://doi.org/10.1016/j.jid.2023.03.1657

Huelsmann M, Hecker N, Springer MS, Gatesy J, Sharma V, Hiller M (2019) Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Sci Adv. https://doi.org/10.1126/sciadv.aaw6671

Indrischek H, Hammer J, Machate A, Hecker N, Kirilenko B, Roscito J, Hans S, Norden C, Brand M, Hiller M (2022) Vision-related convergent gene losses reveal SERPINE3’s unknown role in the eye. Elife. https://doi.org/10.7554/eLife.77999

Ji X, Chen H, Xie L, Chen S, Huang S, Tan Q, Yang H, Yang T, Ye X, Zeng Z, Wan C, Li L (2023) The study of GSDMB in pathogenesis of psoriasis vulgaris. PLoS ONE. https://doi.org/10.1371/journal.pone.0279908

Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, Wu C, Muzny DM, Li Y, Zhang W, Stanton JA, Brauning R, Barris WC, Hourlier T, Aken BL, Searle SMJ, Adelson DL, Bian C, Cam GR, Chen Y, Cheng S, DeSilva U, Dixen K, Dong Y, Fan G, Franklin IR, Fu S, Guan R, Highland MA, Holder ME, Huang G, Ingham AB, Jhangiani SN, Kalra D, Kovar CL, Lee SL, Liu W, Liu X, Lu C, Lv T, Mathew T, McWilliam S, Menzies M, Pan S, Robelin D, Servin B, Townley D, Wang W, Wei B, White SN, Yang X, Ye C, Yue Y, Zeng P, Zhou Q, Hansen JB, Kristensen K, Gibbs RA, Flicek P, Warkup CC, Jones HE, Oddy VH, Nicholas FW, McEwan JC, Kijas J, Wang J, Worley KC, Archibald AL, Cockett N, Xu X, Wang W, Dalrymple BP (2014) The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344:1168–1173. https://doi.org/10.1126/science.1252806

Kawelke S, Feussner I (2015) Two predicted transmembrane domains exclude very long chain fatty acyl-CoAs from the active site of mouse wax synthase. PLoS ONE. https://doi.org/10.1371/journal.pone.0145797

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/s41587-019-0201-4

Kobayashi T, Fujimori K (2012) Very long-chain-fatty acids enhance adipogenesis through coregulation of Elovl3 and PPARγ in 3T3-L1 cells. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00623.2011

Kobielak K, Kandyba E, Leung Y (2015) Skin and skin appendage regeneration. In: Translational regenerative medicine. Elsevier. pp. 269–292

Kowalczyk A, Chikina M, Clark NL (2022) Complementary evolution of coding and noncoding sequence underlies mammalian hairlessness. Elife 11:e76911. https://doi.org/10.7554/eLife.76911

Krieg P, Rosenberger S, de Juanes S, Latzko S, Hou J, Dick A, Kloz U, van der Hoeven F, Hausser I, Esposito I, Rauh M, Schneider H (2013) Aloxe3 knockout mice reveal a function of epidermal lipoxygenase-3 as hepoxilin synthase and its pivotal role in barrier formation. J Invest Dermatol 133:172–180. https://doi.org/10.1038/jid.2012.250

Kwack MH, Kim JC, Kim MK (2019) Ectodysplasin-A2 induces apoptosis in cultured human hair follicle cells and promotes regression of hair follicles in mice. Biochem Biophys Res Commun 520(2):428–433. https://doi.org/10.1016/j.bbrc.2019.10.031

Lachner J, Mlitz V, Tschachler E, Eckhart L (2017) Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-17782-4

Lan X, Kumar V, Jha A, Aslam R, Wang H, Chen K, Yu Y, He W, Chen F, Luo H, Malhotra A, Singhal PC (2020) EDA2R mediates podocyte injury in high glucose milieu. Biochimie 174:74–83. https://doi.org/10.1016/j.biochi.2020.04.003

Li HM, Liu P, Zhang XJ, Li LM, Jiang HY, Yan H, Hou FH, Chen JP (2020) Combined proteomics and transcriptomics reveal the genetic basis underlying the differentiation of skin appendages and immunity in pangolin. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-71513-w

Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

Liu J, Shu M, Liu S, Xue J, Chen H, Li W, Zhou J, Amanullah A, Guan M, Bao J, Pu D, Deng C (2022) Differential MC5R loss in whales and manatees reveals convergent evolution to the marine environment. Dev Genes Evol 232:81–87. https://doi.org/10.1007/s00427-022-00688-1

Liumsiricharoen M, Prapong T, Chungsamarnyart N, Thiangtum K, Pongket P, Ruengsuphaphichat P, Suprasert A (2008) Macroscopic and Microscopic Study of the Integument and Accessory Organs of Malayan Pangolin (Manis javanica). Kasetsart Veterinarians

Lobitz WC (1957) The structure and function of the sebaceous glands. AMA Arch Derm. https://doi.org/10.1001/archderm.1957.01550200006002

Lopes-Marques M, Machado AM, Alves LQ, Fonseca MM, Barbosa S, Sinding MHS, Rasmussen MH, Iversen MR, Bertelsen MF, Campos PF, Fonseca R, Ruivo R, Castro LFC (2019a) Complete inactivation of sebum-producing genes parallels the loss of sebaceous glands in Cetacea. Mol Biol Evol 36:1270–1280. https://doi.org/10.1093/molbev/msz068

Lopes-Marques M, Ruivo R, Alves LQ, Sousa N, Machado AM, Castro LFC (2019b) The singularity of cetacea behavior parallels the complete inactivation of melatonin gene modules. Genes (basel). https://doi.org/10.3390/genes10020121

Lu Z, Yue Y, Yuan C, Liu J, Chen Z, Niu C, Sun X, Zhu S, Zhao H, Guo T, Yang B (2020) Genome-wide association study of body weight traits in chinese fine-wool sheep. Animals. https://doi.org/10.3390/ani10010170

Lui ZZ, Yang YJ, Zhou FH, Ma K, Lin XQ, Yan SQ, Gao Y, Chen W (2021) GSDMD contributes to host defense against Staphylococcus aureus skin infection by supressing the Cxcl1-Cxcr2 axis. Vet Res 52(1):1–13. https://doi.org/10.1186/s13567-021-00937-7

Makino T, Mizawa M, Yoshihisa Y, Yamamoto S, Tabuchi Y, Miyai M, Hibino T, Sasahara M, Shimizu T (2020) Trichohyalin-like 1 protein plays a crucial role in proliferation and anti-apoptosis of normal human keratinocytes and squamous cell carcinoma cells. Cell Death Discov. https://doi.org/10.1038/s41420-020-00344-5

Martin A, Saathoff M, Kuhn F, Max H, Terstegen L, Natsch A (2010) A functional ABCC11 allele is essential in the biochemical formation of human axillary odor. JID 130:529–540. https://doi.org/10.1038/jid.2009.254

Menon GK, Catania KC, Crumrine D, Bradley C, Mauldin EA (2019) Unique features of the skin barrier in naked mole rats reflect adaptations to their fossorial habitat. J Morphol 280:1871–1880. https://doi.org/10.1002/jmor.21072

Meyer W, Liumsiricharoen M, Suprasert A, Fleischer LG, Hewicker-Trautwein M (2013) Immunohistochemical demonstration of keratins in the epidermal layers of the Malayan pangolin (Manis javanica), with remarks on the evolution of the integumental scale armour. Eur J Histochem 57:172–177. https://doi.org/10.4081/ejh.2013.e27

Nery MF, Arroyo JI, Opazo JC (2014) Increased rate of hair keratin gene loss in the cetacean lineage. BMC Genomics 15:1–9. https://doi.org/10.1186/1471-2164-15-869

Niemann C, Horsley V (2012) Development and homeostasis of the sebaceous gland. Semin Cell Dev Biol 23:928–936. https://doi.org/10.1016/j.semcdb.2012.08.010

Oh JW, Chung O, Cho YS, Macgregor GR, Plikus MV (2015) Gene loss in keratinization programs accompanies adaptation of cetacean skin to aquatic lifestyle. Exp Dermatol 24:572. https://doi.org/10.1111/exd.12756

Okamoto R, Goto I, Nishimura Y, Kobayashi I, Hashizume R, Yoshida Y, Ito R, Kobayashi Y, Nishikawa M, Ali Y, Saito S, Tanaka T, Sawa Y, Ito M, Dohi K (2020) Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish. PLoS ONE. https://doi.org/10.1371/journal.pone.0240129

Pappas A (2009) Epidermal Surface Lipids. Dermatoendocrinol 1:72–76. https://doi.org/10.4161/derm.1.2.7811

Plochocki JH, Ruiz S, Rodriguez-Sosa JR, Hall MI (2017) Histological study of white rhinoceros integument. PLoS ONE. https://doi.org/10.1371/journal.pone.0176327

Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F (2018) MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol Biol Evol 35:2582–2584. https://doi.org/10.1093/molbev/msy159

Reeb D, Best PB, Kidson SH (2007) Structure of the integument of southern right whales, Eubalaena australis. Anat Rec Adv Integr Anat Evol Biol 290:596–613. https://doi.org/10.1002/ar.20535

Runkel F, Marquardt A, Stoeger C, Kochmann E, Simon D, Kohnke B, Korthaus D, Wattler F, Fuchs H, Hrabé de Angelis M, Stumm G, Nehls M, Wattler S, Franz T, Augustin M (2004) The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3. Genomics 84(5):824–835. https://doi.org/10.1016/j.ygeno.2004.07.003

Savina A, Jaffredo T, Saldmann F, Faulkes CG, Moguelet P, Leroy C, del Marmol D, Codogno P, Foucher L, Zalc A, Viltard M, Friedlander G, Aractingi S, Fontaine RH (2022) Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin. Aging 14:3728–3756. https://doi.org/10.18632/aging.204054

Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KSD, Foster JA, Brenna JT, Weiss RS, Travis AJ (2010) Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol 348:177. https://doi.org/10.1016/j.ydbio.2010.09.019

Shintani A, Sakata-Haga H, Moriguchi K, Tomosugi M, Sakai D, Tsukada T, Taniguchi M, Asano M, Shimada H, Otani H, Shoji H, Hatta J, Mochizuki T, Hatta T (2021) MC5R contributes to sensitivity to UVB waves and barrier function in mouse epidermis. JID Innov 1:100024. https://doi.org/10.1016/j.xjidi.2021.100024

Sokolov VE (1982) Mammal skin. University of California Press, London

Spearman RI (1970) The epidermis and its keratinisation in the African elephant (Loxodonta Africana). Zoologica Africana 5:327–338

Spearman RI (1972) The epidermal stratum corneum of the whale. J Anat 113:373–381

Springer MS, Gatesy J (2018) Evolution of the MC5R gene in placental mammals with evidence for its inactivation in multiple lineages that lack sebaceous glands. Mol Phylogenet Evol 120:364–374. https://doi.org/10.1016/j.ympev.2017.12.010

Springer MS, Guerrero-Juarez CF, Huelsmann M, Collin MA, Danil K, McGowen MR, Oh JW, Ramos R, Hiller M, Plikus MV, Gatesy J (2021) Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Curr Biol 31:2124–2139. https://doi.org/10.1016/j.cub.2021.02.057

Sweet-Jones J, Yurchenko AA, Igoshin AV, Yudin NS, Swain MT, Larkin DM (2021) Resequencing and signatures of selection scan in two Siberian native sheep breeds point to candidate genetic variants for adaptation and economically important traits. Anim Genet 52:126–131. https://doi.org/10.1111/age.13015

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:605. https://doi.org/10.1093/nar/gkaa1074

Tamura M, Shiroishi T (2015) GSDM family genes meet autophagy. Biochem J 469:5–7. https://doi.org/10.1042/BJ20150558

Tamura M, Tanaka S, Fujii T, Aoki A, Komiyama H, Ezawa K, Sumiyama K, Sagai T, Shiroishi T (2007) Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89:618–629. https://doi.org/10.1016/j.ygeno.2007.01.003

Themudo G, Alves LQ, Machado AM, Lopes-Marques M, da Fonseca RR, Fonseca M, Ruivo R, Castro LFC (2020) Losing genes: the evolutionary remodeling of cetacea skin. Front Mar Sci. https://doi.org/10.3389/fmars.2020.5923

Trivedi NR, Cong Z, Nelson AM, Albert AJ, Rosamilia LL, Sivarajah S, Gilliland KL, Liu W, Mauger DT, Gabbay RA, Thiboutot DM (2006) Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol 126:2002–2009. https://doi.org/10.1038/sj.jid.5700336

Turkish AR, Henneberry AL, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano AM, Billheimer JT, Sturley SL (2005) Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem 280(15):14755–14764. https://doi.org/10.1074/jbc.M500025200

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, Feilitzen KV, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Tissue-based map of the human proteome. Science. https://doi.org/10.1126/science.1260419

Valente R, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC (2021a) Functional or Vestigial? The Genomics of the pineal gland in xenarthra. J Mol Evol 89:565–575. https://doi.org/10.1007/s00239-021-10025-1

Valente R, Alves LQ, Nabais M, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC (2021b) Convergent Cortistatin losses parallel modifications in circadian rhythmicity and energy homeostasis in Cetacea and other mammalian lineages. Genomics 113:1064–1070. https://doi.org/10.1016/j.ygeno.2020.11.002

Wang B, Yang W, Sherman VR, Meyers MA (2016) Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater 41:60–74. https://doi.org/10.1016/j.actbio.2016.05.028

Wang Q, Lan T, Li H, Sahu S, Shi M, Zhu Y, Han L, Yang S, Li Q, Zhang L, Deng Z, Liu H, Hua Y (2022) Whole-genome resequencing of Chinese pangolins reveals a population structure and provides insights into their conservation. Commun Biol 5:821. https://doi.org/10.1038/s42003-022-03757-3

Westerberg R, Tvrdik P, Undén AB, Månsson JE, Norlén L, Jakobsson A, Holleran WH, Elias PM, Asadi A, Flodby P, Toftgård R, Capecchi MR, Jacobsson A (2004) Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J Biol Chem 279:5621–5629. https://doi.org/10.1074/jbc.M310529200

Wu T, Deme L, Zhang Z, Huang X, Xu S, Yang G (2022) Decay of TRPV3 as the genomic trace of epidermal structure changes in the land-to-sea transition of mammals. Ecol Evol https://doi.org/10.1002/ece3.8731

Xu Y, Guan X, Zhou R, Gong R (2020) Melanocortin 5 receptor signaling pathway in health and disease. Cell Mol Life Sci 77:3831–3840. https://doi.org/10.1007/s00018-020-03511-0

Yan D, Luo X, Tang J, Xu S, Huang K, Wang X, Feng T, Que T, Jia M, Guo X, Rehman S, Li Z, Yang Y, Li K, Cui K, Ruan J, Liu Q (2023) High-quality genomes of pangolins: insights into the molecular basis of scale formation and adaption to myrmecophagous diet. Mol Biol Evol https://doi.org/10.1093/molbev/msac262

Yang H, Shi Y, Liu LF, Qiu B, Feng Q, Wang Y, Yang B (2022) Pyroptosis executor gasdermin D plays a key role in scleroderma and bleomycin-induced skin fibrosis. Cell Death Discovery 8(1):183. https://doi.org/10.1038/s41420-022-00970-1

Zhang Y, Park C, Bennett C, Thornton M, Kim D (2021) Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res 31:1290–1295. https://doi.org/10.1101/gr.275193.120

Zhao H, Li J, Zhang J (2015) Molecular evidence for the loss of three basic tastes in penguins. Curr Biol 25:141–142. https://doi.org/10.1016/j.cub.2015.01.026

Zheng Z, Hua R, Xu G, Yang H, Shi P (2022) Gene losses may contribute to subterranean adaptations in naked mole-rat and blind mole-rat. BMC Biol 20:1–17. https://doi.org/10.1186/s12915-022-01243-0

Zoonomia Consortium (2020) A comparative genomics multitool for scientific discovery and conservation. Nature 587:240–245. https://doi.org/10.1038/s41586-020-2876-6