Decay emission study of ZnO nanostructures obtained by low-pressure vapor transport technique

Applied Surface Science Advances - Tập 12 - Trang 100334 - 2022
Andrés Galdámez-Martínez1, Ateet Dutt1, Manmohan Jain2, Lourdes Bazán-Díaz1, Guillermo Santana1, Antonio Méndez-Blas3, Osvaldo de Melo4
1Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México City, México
2SEES, Electrical Engineering Department CINVESTAV-IPN Mexico City, México
3Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, México
4Facultad de Física, Universidad de la Habana, Colina Universitaria, 10400, La Habana, Cuba

Tài liệu tham khảo

You, 2018, Interface control for pure ultraviolet electroluminescence from nano-ZnO-based heterojunction devices, Sci. Bull., 63, 38, 10.1016/j.scib.2017.12.006 Ding, 2018, One-dimensional zinc oxide nanomaterials for application in high-performance advanced optoelectronic devices, Crystals, 8, 1, 10.3390/cryst8050223 Li, 2019, Improved optical property and lasing of ZnO nanowires by Ar plasma treatment, Nanoscale Res. Lett., 14, 14, 10.1186/s11671-019-3145-1 Batra, 2022, Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: a review, Appl. Surf. Sci. Adv., 11, 10.1016/j.apsadv.2022.100314 Suh, 2010, Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor-liquid-solid growth mechanism, Appl. Surf. Sci., 257, 1454, 10.1016/j.apsusc.2010.08.067 Geng, 2004, Well-aligned ZnO nanowire arrays fabricated on silicon substrates, Adv. Funct. Mater., 14, 589, 10.1002/adfm.200305074 Xudong, 2009, Single-crystal mesoporous ZnO thin films composed of nanowalls, J. Phys. Chem. C., 113, 1791, 10.1021/jp809358m Menzel, 2012, Role of carrier gas flow and species diffusion in nanowire growth from thermal CVD, J. Phys. Chem. C., 116, 5524, 10.1021/jp212635w Chatchawal, 2011, Controlled synthesis of ZnO nanostructures: the role of source and substrate temperatures, J. Phys. Chem. C., 115, 757, 10.1021/jp110416v Voss, 2008, Recombination dynamics of surface-related excitonic states in single ZnO nanowires, J. Nanosci. Nanotechnol., 8, 228, 10.1166/jnn.2008.N06 Djurišić, 2007, Defect emissions in ZnO nanostructures, Nanotechnology, 18, 10.1088/0957-4484/18/9/095702 Baratto, 2009, Luminescence response of ZnO nanowires to gas adsorption, Sensors Actuat. B, 140, 461, 10.1016/j.snb.2009.05.018 Raji, 2017, ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing, J. Sci. Adv. Mater. Devices., 2, 51, 10.1016/j.jsamd.2017.02.002 Yang, 2007, Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire, Nano Lett, 7, 3879, 10.1021/nl071849h Kennedy, 2019, Mapping the origins of luminescence in ZnO nanowires by STEM-CL, J. Phys. Chem. Lett., 10, 386, 10.1021/acs.jpclett.8b03286 Li, 2004, Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods, Appl. Phys. Lett., 85, 1601, 10.1063/1.1786375 Lupan, 2010, Low-voltage UV-electroluminescence from ZnO-Nanowire array/p-CaN light-emitting diodes, Adv. Mater., 22, 3298, 10.1002/adma.201000611 Yang, 2010, Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect, ACS Nano, 4, 6285, 10.1021/nn1022878 Qiu, 2015, Branched ZnO nanotrees on flexible fiber-paper substrates for self-powered energy-harvesting systems, RSC Adv, 5, 5941, 10.1039/C4RA09163A Zhou, 2019, Plasmon-induced hot electron transfer in Au-ZnO heterogeneous nanorods for enhanced SERS, Nanoscale, 11, 11782, 10.1039/C9NR02969A González-Garnica, 2021, One dimensional Au-ZnO hybrid nanostructures based CO2 detection: growth mechanism and role of the seed layer on sensing performance, Sensors Actuators B Chem, 337, 10.1016/j.snb.2021.129765 Kegel, 2018, Zinc oxide for solar water splitting: a brief review of the material's challenges and associated opportunities, Nano Energy, 54, 409, 10.1016/j.nanoen.2018.10.043 Galdámez-Martinez, 2020, Photoluminescence of zno nanowires: a review, Nanomaterials, 10, 857, 10.3390/nano10050857 Lee, 2016, Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement, Sci. Rep., 6, 1 Wang, 2018, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review, Ceram. Int., 44, 7357, 10.1016/j.ceramint.2018.02.013 Lima, 2001, Luminescent properties and lattice defects correlation on zinc oxide, Int. J. Inorg. Mater., 3, 749, 10.1016/S1466-6049(01)00055-1 Lin, 2001, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., 79, 943, 10.1063/1.1394173 Van De Walle, 2000, Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett., 85, 1012, 10.1103/PhysRevLett.85.1012 Cao, 2006, Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays, Appl. Phys. Lett., 88, 1, 10.1063/1.2195694 Ahn, 2009, A comparative analysis of deep level emission in ZnO layers deposited by various methods, J. Appl. Phys., 105, 1 Li, 2015, Highly monodispersed ZnO nanorods: preparation and optical properties, J. Exp. Nanosci., 10, 682, 10.1080/17458080.2013.873828 Xing, 2011, Charge transfer dynamics in Cu-doped ZnO nanowires, Appl. Phys. Lett., 98, 8, 10.1063/1.3558912 Leung, 2005, Time-resolved study of stimulated emission in ZnO tetrapod nanowires, Nanotechnology, 16, 579, 10.1088/0957-4484/16/4/040 Hong, 2003, Time-resolved photoluminescence of the size-controlled ZnO nanorods, Appl. Phys. Lett., 83, 4157, 10.1063/1.1627472 Sönmez, 2012, Enhancement of photoluminescence lifetime of ZnO nanorods making use of Thiourea, J. Nanomater., 2012 Kodama, 2014, Variations in decay rate of green photoluminescence in ZnO under above- and below-band-gap excitation, J. Phys. Chem. C., 118, 23977, 10.1021/jp506953h