Biochar đã được loại tro như một chất mang Nitơ, kéo dài thời gian giải phóng Nitơ bằng cách ức chế mất Nitơ trong các loại đất có tính kiềm.

Biomass Conversion and Biorefinery - Tập 13 - Trang 9549-9564 - 2023
Muhammad Rashid1,2, Qaiser Hussain1, Rifat Hayat1, Mukhtar Ahmad3, Muhammad Azeem1, Sarosh Alvi2, Arshad Nawaz Chaudhry1, Sajid Masood4, Rabia Khalid1, Sarvet Jehan1, Obaid ur Rehman2
1Institute of Soil and Environmental Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
2Soil and Water Testing Laboratory for Research, Rawalpindi, Pakistan
3Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
4Department of Soil Science, Faculty of Agricultural Sciences and Technology, Multan, Pakistan

Tóm tắt

Gần đây, biochar đã được thử nghiệm như một chất mang dinh dưỡng để tổng hợp phân bón giải phóng chậm. Tuy nhiên, loại phân bón giải phóng chậm này được thiết kế đặc biệt cho các loại đất có tính kiềm và nhiều canxi. Biochar có khả năng hấp thụ/kết hợp lượng lớn các ion dinh dưỡng nhờ vào diện tích bề mặt rộng, độ rỗng và các nhóm chức năng trên bề mặt. Thêm vào đó, các thuộc tính tự nhiên của biochar có thể được điều chỉnh để phù hợp với công dụng cụ thể. Do đó, trong nghiên cứu này, chúng tôi đã tập trung vào việc chế tạo một loại phân bón nitơ giải phóng chậm được thiết kế bằng cách biến đổi biochar thông qua quy trình loại tro để phù hợp với các loại đất có tính kiềm nhiều canxi, vì những loại đất này dễ bị mất nitơ nghiêm trọng. Biochar từ gỗ keo (Acacia Arabica L.) được sản xuất và loại tro bằng 0,1 M HCl. Sau đó, biochar thô và biochar đã loại tro được phân tích để đánh giá sự thay đổi về pH, CEC, hàm lượng tro, chất bay hơi, carbon cố định, diện tích bề mặt, thể tích lỗ, hình thái bề mặt, cấu trúc khoáng chất và các nhóm chức năng trên bề mặt sau khi loại tro. Phân bón nitơ giải phóng chậm dựa trên biochar (BSRNF) được tổng hợp bằng cách ngâm urea vào biochar, trong khi tinh bột và polyvinyl alcohol được sử dụng làm chất kết dính. Tác động của BSRNF đối với việc giải phóng N, bay hơi NH3, rửa trôi NO3 và phát thải N2O đã được nghiên cứu trên hai loại đất khác nhau so với urea thông thường. Kết quả cho thấy, việc loại tro đã thay đổi một cách đáng kể các thuộc tính của biochar, từ đó làm tăng khả năng hấp thụ urea vào biochar, điều này được xác nhận qua hình ảnh SEM, mẫu XRD và phổ FTIR của biochar thô và đã loại tro. Đánh giá BSRNF trên hai loại đất có tính kiềm nhiều canxi khác nhau cho thấy khả năng giải phóng N kéo dài lên đến ≥ 60 ngày. Do đó, BSRNF so với urea thông thường, đã giảm đáng kể lượng bay hơi NH3 lên đến 38,09%, rửa trôi NO3 lên đến 49,66% và phát thải N2O lên đến 52,39% của lượng N được bổ sung. BSRNF đã trì hoãn một cách đáng kể sự giải phóng nitơ trong đất, dẫn đến giảm thiểu tổn thất nitơ so với urea thông thường. Cơ chế này liên quan đến sự hấp thụ nitơ vào biochar, được cải thiện thêm bởi quá trình loại tro. Việc loại tro cũng đã khiến biochar trở nên phù hợp hơn cho các loại đất có tính kiềm nhiều canxi. Ngoài ra, tỷ lệ ứng dụng của biochar cũng đã tiết kiệm hơn.

Từ khóa


Tài liệu tham khảo

Liu X, Liao J, Song H, Yang Y, Guan C, Zhang Z (2019) A biochar-based route for environmentally friendly controlled release of nitrogen: urea-loaded biochar and bentonite composite. Sci Rep 9:9548. https://doi.org/10.1038/s41598-019-46065-3 Sarfraz R, Awais S, Abdullah M, Arooj A, Hussain A, Xing S (2017) Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil. Soil Sci Plant Nutr 1–11. https://doi.org/10.1080/00380768.2017.1376225 Aziz T, Wakeel A, Watto MA, Sanaullah M, Maqsood MA, Kiran A (2021) Nitrogen assessment: Pakistan as a case-study. Academic Press, p 195. https://doi.org/10.1016/C2020-0-02160-2 Raza S, Zhou J, Aziz T, Afzal MR, Ahmed M, Javaid S (2018) Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: a challenge not challenged (1961–2013). Environ Res Lett 13:034012. https://doi.org/10.1088/1748-9326/aaa9c5 Manzoor S, Rahman MHU, Haider G, Ghafoor I, Ahmad S, Afzal M, Nawaz F, Iqbal R, Yasin M, Haq T, Danish S, Ghaffar A (2021) Biochar and slow release nitrogen fertilizer improve growth, yield, NUE, fiber quality of cotton and reduce nitrogen losses under arid climatic conditions. Environ Sci Pollut Res 11:1–14. https://doi.org/10.1007/s11356-021-16576-6 Rahman MH, Ahmad I, Wang D, Fahad S, Afzal M, Ghaffar A, Saddique Q, Khan MA, Saud S, Hassan S et al (2021) Influence of semi-arid environment on radiation use efficiency and other growth attributes of lentil crop. Environ Sci Pollut Res 28:13697–13711 Losacco D, Tumolo M, Cotugno P, Leone N, Massarelli C, Convertini S, Tursi A, Uricchio VF, Ancona V (2022) Use of Biochar to improve the sustainable crop production of cauliflower (Brassica oleracea L.). Plants 11:1182. https://doi.org/10.3390/plants11091182 Ding Z, Majrashi MA, Ghoneim AM et al (2022) Irrigation and biochar effects on pearl millet and kinetics of ammonia volatilization from saline sandy soils. J Soil Sci Plant Nutr 22:1546–1558. https://doi.org/10.1007/s42729-021-00753-0 Hassan MU, Aamer M, Mahmood A, Awan MI, Barbanti L, Seleiman MF, Bakhsh G, Alkharabsheh HM, Babur E, Shao J et al (2022) Management Strategies to mitigate N2O emissions in agriculture. Life 12:439. https://doi.org/10.3390/life12030439 Minhas WA, Hussain M, Mehboob N, Nawaz A, Ullah S, Rizwan MS, Hassan Z (2020) Synergetic use of biochar and synthetic nitrogen and phosphorus fertilizers to improves maize productivity and nutrient retention in loamy soil. J Plant Nutrit 43(9):1356–1368. https://doi.org/10.1080/01904167.2020.1729804 Osman AI, Fawzy S, Farghali M et al (2022) Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environ Chem Lett 20:2385–2485 Fawzy S et al (2020) Strategies for mitigation of climate change: a review. Environ Chem Lett 18:2069–2094. https://doi.org/10.1007/s10311-020-01059-w Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523. https://doi.org/10.1111/gcbb.12266 Waqar M, Habib-ur-Rahman M, Hasnain M et al (2022) Effect of slow release nitrogenous fertilizers and biochar on growth, physiology, yield, and nitrogen use efficiency of sunflower under arid climate. Environ Sci Pollut Res 29:52520–52533. https://doi.org/10.1007/s11356-022-19289-6 Xiongfang A, Jianglong Y, Junzhi Y, Arash T, Zhansheng W, Liu Xiaochen, Bing Y (2020) Incorporation of biochar into semi-interpenetrating polymer networks through graft co-polymerization for the synthesis of new slow-release fertilizers. J Clean Product 272:122731. https://doi.org/10.1016/j.jclepro.2020.122731 Wang M, Aihua X, Zhennan G, Ke Z, Yongzhi R, Zhifeng H (2021) Study on the nitrogen-releasing characteristics and mechanism of biochar-based urea infiltration fertilizer. Biomass Convers Bioref. https://doi.org/10.1007/s13399-021-01848-5 Joseph S, Annette L, Cowie L, Zwieten V, Bolan N, Budai A, Buss W, Luz M et al (2021) How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar. GCB Bioener 13(11):1731–1764. https://doi.org/10.1111/gcbb.12885 Sahin O, Taskin MB, Kaya EC, Atakol O, Emir E, Inal A, Gunes A, Nicholson F (2017) Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use Manag 33(3):447–456. https://doi.org/10.1111/sum.12360 Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil 327:235–46. https://doi.org/10.1007/s11104-009-0050-x Farrell M, Macdonald LM, Butler G, Chirino-Valle I, Condron LM (2014) Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol Fertil Soils 50:169–78. https://doi.org/10.1007/s00374-013-0845-z Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag 27:110–15. https://doi.org/10.1111/j.1475-2743.2010.00317.x Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of green waste biochar as a soil amendment. Aus J Soil Res 45:629–34. https://doi.org/10.1071/SR07109 Mayer ZA, Eltom Y, Stennett D, Schröder E, Apfelbacher A, Hornu A (2014) Characterization of engineered biochar for soil management. Environ Prog Sustain Energ 33:490–96. https://doi.org/10.1002/ep.11788 Wang T, Arbestan MC, Hedley M, Bishop P (2012) Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 357:173–87. https://doi.org/10.1007/s11104-012-1131-9 Sun K, Kang M, Zhang Z, Jin J, Wang Z, Pan Z, Xu D, Wu F, Xing B (2013) Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environ Sci Technol 47(20):11473–11481. https://doi.org/10.1021/es4026744 Al-Wabel MI (2019) A short-term effect of date palm biochars on NH3 volatilization and N transformation in calcareous sandy loam soil. Arab J Geosci 12(12):383. https://doi.org/10.1007/s12517-019-4538-2 Gwenzi W, Nyambishi TJ, Chaukura N, Mapope N (2018) Synthesis and nutrient release patterns of a biochar-based N-P-K slow-release fertilizer. Int J Environ Sci Technol 15:405–414. https://doi.org/10.1007/s13762-017-1399-7 Liao J, Liu X, Hu A et al (2020) Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). Sci Rep 10:11063. https://doi.org/10.1038/s41598-020-67528-y Bakshi S, Banik C, Laird DA, Smith R, Brown RC (2021) Enhancing biochar as scaffolding for slow release of nitrogen fertilizer. ACS Sustain Chem Eng 9(24):8222–8231. https://doi.org/10.1021/acssuschemeng.1c0226 Pituya P, Sriburi T, Wijitkosum S (2017) Properties of biochar prepared from acacia wood and coconut shell for soil amendment. Eng J 21(3):63–75. https://doi.org/10.4186/ej.2017.21.3.63 (2016) International Biochar Initiative, standardized product definition and product testing guidelines for biochar that is used in soil, IBI biochar standards Dietrich CC, Rahaman MA, Robles-Aguilar AA, Latif S, Intani K, Muller J, Jablonowski ND (2020) Nutrient loaded biochar doubled biomass production in juvenile maize plants (Zea mays L.). Agron 10(4):567. https://doi.org/10.3390/agronomy10040567 Terzioğlu P, Parin FN (2020) Biochar reinforced polyvinyl alcohol /corn starch biocomposites. Süleyman Demirel Univ J Natl Appl Sci 24(1):35–42. https://doi.org/10.19113/sdufenbed.568229 Alazzaz A, Usman ARA, Ahmad M, Ibrahim HM, Elfaki J, Sallam AS et al (2020) Potential short-term negative versus positive effects of olive mill-derived biochar on nutrient availability in a calcareous loamy sand soil. PLoS One 15(7):e0232811. https://doi.org/10.1371/journal.pone.0232811 Takaya CA, Fletcher LA, Singh S, Anyikude KU, Ross AB (2016) Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 145:518–527 ASTM D1762-84 (2013) Standard methods for chemical analysis of wood charcoal. ASTM International, West Conshohocken Liu Z, He T, Cao T, Yang T, Meng J, Chen W (2017) Effects of biochar application on nitrogen leaching, ammonia volatilization, and nitrogen use efficiency in two distinct soils. J Soil Sci Plant Nutr 17:515–528. https://doi.org/10.4067/S0718-95162017005000037 Kanthle AK, Lenka NK, Lenka S (2016) Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India. Soil Till Res 157:65–72. https://doi.org/10.1016/j.still.2015.11.009 Majumdar D, Pathak H, Kumar S, Jain MC (2002) Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors. Agric Ecosyst Environ 91:283–293. https://doi.org/10.1016/S0167-8809(01)00223-7 Page AL, Miller RH, DR Keeney (1982) Methods of soil analysis. Chem Res 211–219 Walkley A (1947) A critical examination of a rapid method for determination of organic carbon in soils - effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–257 Bremner JM (1996) Nitrogen-Total. In: Sparks DL (ed) Methods of soil analysis. Part 3 chemical methods. SSSA and ASA, Madison, pp 1085–1122 Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plants. Annu Rev Plant Physiol 52:527–560 Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis, part I. Amer Soc Agro No.9. Madison, pp 383–411 Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis, Agron. No. 9, Part 2: Chemical and Microbiological Properties, 2nd edn, Am Soc Agron, p 403–430 Tandon HLS KN Tiwari (2009) Methods of analyses of soils, plants, waters, fertilizers, and organic manures. Tandon HLS (ed). Fertilizer Development and Consultation Organization, New Delhi, pp 32–34 Lombolu AE, Jeancy Luta N, Mande IK, Mbe-Mpie PM (2022) Physico-chemical characteristics of the biochars of Acacia sp, Bambusa sp, Eichchornia crassipes and Hymenocardia acida. J Appl Biosci 170: 17680–17689. https://doi.org/10.35759/JABs.170.2 Fawzy S, Osman AI, Mehta N, Moran D, Al-Muhtaseb AH, Rooney DW (2022) Atmospheric carbon removal via industrial biochar systems: a techno-economic-environmental study. J Clean Prod 371(6):133660. https://doi.org/10.1016/j.jclepro.2022.133660 Liu WJ, Jiang H, Yu HQ (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285 Breulmann M, Schulz E, van Afferden M, Müller RA, Fühner C (2018) Hydrochars derived from sewage sludge: effects of pre-treatment with water on char properties, phytotoxicity and chemical structure. Arch Agron Soil Sci 64(6):860–872 Korai PK, Sial TA, Hussain Q, Jamro GM, Kumbhars F, Chandio FA (2018) Washed Biochar enhances soil quality, carbon fractions and the performance of ammonium and nitrates in soil. Fresenius Environ Bull 27(12):8205–8212 Hayashi J, Li, CZ (2004) Structure and properties of Victorian brown coal. Adv SciVictorian Brown Coal 11–84 Kharel G, Oumar S, Xu F, Morris JR, Phillips CL et al (2019) Biochar surface oxygenation by ozonization for super high cation exchange capacity. ACS Sus Chem Eng 7(19):16410–16418. https://doi.org/10.1021/acssuschemeng.9b03536 Costello B, Han B, Chen D, Butterly C (2019) The effect of lignite and modified coal on nitrogen loss from broiler litter. A poster presented at 7th international symposium on soil organic matter, Hilton Adelaide, South Australia, Australia Karunanayake AG, Todd OA, Crowley ML, Mohan D, Mlsna T (2018) Lead and cadmium remediation using magnetized and non-magnetized biochar from Douglas fir. Chem Eng J 331:480–491. https://doi.org/10.1016/j.cej.2017.08.124 Chen W, Wei R, Yang L, Yang Y, Li G, Ni J (2019) Characteristics of wood-derived biochars produced at different temperatures before and after deashing: their different potential advantages in environmental applications. Sci Total Environ 651:2762–2771. https://doi.org/10.1016/j.scitotenv.2018.10.141 Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51(6): 2061–2069. https://doi.org/10.13031/2013.25409 Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour Technol 212:318–333. https://doi.org/10.1016/j.biortech.2016.04.093 Wang Z, Li J, Zhang G, Zhi Y, Yang D, Lai X, Ren T (2020) Characterization of Acid-aged biochar and its ammonium adsorption in an aqueous solution. Materials 13(10):2270. https://doi.org/10.3390/ma13102270 Ibrahim MM, Hu K, Tong C, Xing S, Zou S, Mao Y (2020) Deashed biochar enhances nitrogen retention in manured soil and changes soil microbial dynamics. Geoderma 378:114589. https://doi.org/10.1016/j.geoderma.2020.114589 Manna S, Singh N, Purakayastha TJ, Bern A (2020) Effect of deashing on physico-chemical properties of wheat and rice straw biochars and potential sorption of pyrazosulfuron-ethyl. Arab J Chem 13(1):1247–1258 Fazzalari A (2021) Impact of post-pyrolysis wash on biochar powders and their respective granule formations. Thesis submitted for Master of Engineering Science in Chemical and Biochemical Engineering. The University of Western Ontario, USA, pp 42–46 Sakintuna B, Yurum Y (2004) Evolution of carbon microstructures during the pyrolysis of Turkish Albiston lignite in the temperature range 700–1000 °C. Energy Fuels 18:883–888 Barbosa CF, Correa DA, Carneiro JS, Melo LCA (2022) Biochar phosphate fertilizer loaded with urea preserves available nitrogen longer than conventional urea. Sustain 14:686. https://doi.org/10.3390/su14020686 Batista EMCC, Shultz J, Matos TTS, Fornari MR, Ferreira TM, Szpoganicz B, de Freitas RA, Mangrich AS (2018) Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci Rep 8:10677. https://doi.org/10.1038/s41598-018-28794-z Zhao Z, Ibrahim MM, Wang X, Xing S, Heiling M, Hood-Nowotny R, Tong C, Mao Y (2019) Properties of biochar derived from spent mushroom substrates. Bioresources 14:5254–5277. https://doi.org/10.15376/biores.14.3.5254-5277 Hagemann N, Joseph S, Schmidt HP, Kammann CI, Harter J, Borch T, Young RB, Varga K, Taherymoosavi S, Elliott KW (2017) Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat Commun 8:1089. https://doi.org/10.1038/s41467-017-01123-0 Choudhary V, Philip L (2022) Sustainability assessment of acid-modified biochar as adsorbent for the removal of pharmaceuticals and personal care products from secondary treated wastewater. J Environ Chem Eng 10(3):107592. https://doi.org/10.1016/j.jece.2022.107592 Wen P, Zhansheng W, Yajie H, Giancarlo C, Jun W, Bang-Ce Y (2017) Microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustain Chem Eng 5:7374–7382. https://doi.org/10.1021/acssuschemeng.7b01721 Peng Z, Sun H, Li Y, Sun T (2013) Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: impact of structural properties of biochars. J Hazard Mater 244–245:217–224. https://doi.org/10.1016/j.jhazmat.2012.11.046 Swiatkowski A, Pakula M, Biniak S, Walczyk M (2004) Influence of the surface chemistry of modified activated carbon on its electrochemical behavior in the presence of lead (II) ions. Carbon 42:3057–3069 Conte P, Arsala VM, de Pasquale C, Bubici S, Valagussa M, Pozzi A, Alonzo G (2013) Nature of water-biochar interface interactions. Glob Chang Biol Bioenerg 5:116–121. https://doi.org/10.1111/gcbb.12009 Chandler WV (1960) Nutrient uptake by corn in North Carolina (Technical Bulletin No. 143). Raleigh, N.C.: North Carolina Agricultural Experiment Station and Soil and Water Conservation Research Division, USDA-ARS Mahfuzah NA, Khanif YM, Radziah O, Khairuddin AR (2017) Timing of nitrogen uptake pattern by maize using 15N isotope technique at different growth stages. Bangladesh J Bot 46(1):329–334 Sha Z, Li Q, Lv T, Misselbrook T, Liu X (2019) Response of ammonia volatilization to biochar addition: a meta-analysis. Sci Total Environ 655:1387–1396. https://doi.org/10.1016/j.scitotenv.2018.11.316 Esfandbod M, Phillips IR, Miller B, RezaeiRashti M, Lan ZM, Srivastava P, Singh B, Chen CR (2017) Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand. Ecol Eng 98:157–165. https://doi.org/10.1016/j.ecoleng.2016.10.077 Sun J, Bai M, Shen J, Griffith DWT, Denmead OT, Hill J, Chen D (2016) Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens. Sci Total Environ 565:148–154. https://doi.org/10.1016/j.scitotenv.2016.04.156 Joseph S, Kammann CI, Jessica G, Conte P et al (2018) Microstructural and associated chemical changes during the composting of high-temperature biochar: mechanisms for nitrate, phosphate, and other nutrient retention and release. Sci Total Environ 618:1210–1223. https://doi.org/10.1016/j.scitotenv.2017.09.200 Qiao CL, Liu LL, Hu SJ, Compton JE, Greaver TL, Li QL (2015) How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biol 21:1249–1257. https://doi.org/10.1111/gcb.12802 Clough T, Condron L, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293. https://doi.org/10.3390/agronomy3020275 Haider G, Steffens D, Moser G, Müller C, Kammann CI (2017) Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric Ecosyst Environ 237:80–94. https://doi.org/10.1016/j.agee.2016.12.019 Fidel RB, Laird DA, Spokas KA (2018) Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Sci Rep 8:17627. https://doi.org/10.1038/s41598-018-35534-w Van Es HM, Czymmek KJ, Ketterings QM (2002) Management effects on nitrogen leaching and guidelines for a nitrogen leaching index in New York. J Soil Water Conserv 57:499–504 Keith A, Singh B, Dijkstra FA, van Ogtrop F (2016) Biochar field study: greenhouse gas emissions, productivity, and nutrients in two soils. Agron J 108(5). https://doi.org/10.2134/agronj2016.02.0074 Huppi R, Felber R, Neftel A, Six J, Leifeld J (2015) Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil 1:707–717. https://doi.org/10.5194/soil-1-707-2015 Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16. https://doi.org/10.1016/j.agee.2013.10.009