Phương pháp tách nhôm và silicat cho zeolite HZSM-5 giàu nhôm thông qua xử lý bằng hơi nước và kiềm và ứng dụng của nó trong phản ứng tạo hợp chất thơm từ methanol

Springer Science and Business Media LLC - Tập 13 - Trang 543-553 - 2019
Yuehua Fang1, Fan Yang1, Xuan He1, Xuedong Zhu1
1State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China

Tóm tắt

HZSM-5 phân cấp đã được chế tạo thông qua quá trình tách nhôm và silicat từ HZSM-5 giàu nhôm thương mại và được đặc trưng hóa bằng phương pháp nhiễu xạ tia X, cộng hưởng từ hạt nhân tần số cao 27Al, quang phổ khối lượng plasma cảm ứng, kính hiển vi điện tử quét, kính hiển vi điện tử truyền qua, hấp thụ - desorption N2, tách nhiệt chương trình nhiệt NH3, phân tích nhiệt trọng lực và phổ Raman. Kết quả cho thấy một phần khung của HZSM-5 đã bị loại bỏ sau khi điều trị bằng hơi nước ở áp suất 0,15 MPa, 500°C trong 3 giờ. HZSM-5 với diện tích bề mặt riêng lớn và nhiều cặp lỗ đã được thu được thông qua quá trình xử lý kiềm tiếp theo. Việc điều chỉnh số lượng axit được thực hiện bằng cách thay đổi nồng độ kiềm. Quá trình tách nhôm và silicat của zeolite HZSM-5 giàu nhôm trở nên hiệu quả hơn khi sử dụng sự kết hợp giữa xử lý bằng hơi nước và kiềm so với chỉ sử dụng xử lý kiềm. Phản ứng tạo aromatics từ methanol đã được sử dụng để đánh giá hiệu suất xúc tác của HZSM-5 đã được xử lý tại 0,15 MPa, 450°C và MHSV 1,5 h–1. Kết quả cho thấy rằng sau khi xử lý bằng hơi nước, HZSM-5 được tiếp tục xử lý với NaOH 0,2 mol/L cho hiệu suất xúc tác tốt nhất: độ chọn lọc của hợp chất thơm đạt 42,1% và tuổi thọ của xúc tác đạt 212 giờ, tốt hơn nhiều so với HZSM-5 không được xử lý.

Từ khóa


Tài liệu tham khảo

Wen Z, Xia T, Liu M, Cao Q, Xu Y, Zhu K, Zhu X. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460, 460 Wang F, Xiao W, Gao L, Xiao G. The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol. Catalysis Science & Technology, 2016, 6(9): 3074–3086 Shen X, Kang J, Niu W, Wang M, Zhang Q, Wang Y. Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics. Catalysis Science & Technology, 2017, 7(16): 3598–3612 Xing L, Wei Z, Wen Z, Zhu X. Catalytic study for methanol aromatization over hierarchical ZSM-5 zeolite synthesized by kaolin. Petroleum Science and Technology, 2017, 9(24): 1–6 Yang F, Zhong J, Liu X, Zhu X. A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite. Applied Energy, 2018, 226: 22–30 Wang N, Qian W, Shen K, Su C, Wei F. Bayberry-like ZnO/MFI zeolite as high performance methanol-to-aromatics catalyst. Chemical Communications, 2015, 52(10): 2011–2014 Xu C, Jiang B, Liao Z, Wang J, Huang Z, Yang Y. Effect of metal on the methanol to aromatics conversion over modified ZSM-5 in the presence of carbon dioxide. RSC Advances, 2017, 7(18): 10729–10736 Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013, 44(3): 18–31 Hickman D A, Schmidt L D. Syngas formation by direct catalytic oxidation of methane. Science, 1993, 259(5093): 343–346 Asadullah M, Ito S, Kunimori K, Yamada M, Tomishige K. Biomass gasification to hydrogen and syngas at low temperature: Novel catalytic system using fluidized-bed reactor. Journal of Catalysis, 2002, 208(2): 255–259 Castellanos-Beltran I J, Assima G P, Lavoie J M. Effect of temperature in the conversion of methanol to olefins (MTO) sing an extruded SAPO-34 catalyst. Frontiers of Chemical Science and Engineering, 2018, 12(2): 1–13 Martinez-Espin J S, Mortén M, Janssens T V W, Svelle S, Beato P, Olsbye U. New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds. Catalysis Science & Technology, 2017, 7(13): 2700–2716 Song B, Li Y, Cao G, Sun Z, Han X. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 1–11 Wei Z, Zhu K, Xing L, Yang F, Li Y, Xu Y, Zhu X. Steam-assisted transformation of natural kaolin to hierarchical ZSM-11 using tetrabutylphosphonium hydroxide as structure-directing agent: Synthesis, structural characterization and catalytic performance in the methanol-to-aromatics reaction. RSC Advances, 2017, 7(39): 24015–24021 Mikkelsen Ø, Kolboe S. The conversion of methanol to hydrocarbons over zeolite H-β. Microporous and Mesoporous Materials, 1999, 29(1–2): 173–184 Ravishankar R, Bhattacharya D, Jacob N E, Sivasanker S. Characterization and catalytic properties of zeolite MCM-22. Microporous Materials, 1995, 4(1): 83–93 Kokotailo G T, Lawton S L, Olson D H, Meier W M. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272(5652): 437–438 Gao Y, Zheng B, Wu G, Ma F, Liu C. Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization. RSC Advances, 2016, 6(87): 83581–83588 Zhang G, Zhang X, Bai T, Chen T, Fan W. Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization. Journal of Energy Chemistry, 2015, 24(1): 108–118 Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-tohydrocarbon conversion process. Journal of Catalysis, 2010, 269 (1): 219–228 Iwakai K, Tago T, Konno H, Nakasaka Y, Masuda T. Preparation of nano-crystalline MFI zeolite via hydrothermal synthesis in water/ surfactant/organic solvent using fumed silica as the Si source. Microporous and Mesoporous Materials, 2011, 141(1–3): 167–174 Shen K, Wang N, Qian W, Cui Y, Wei F. Atmospheric pressure synthesis of nanosized ZSM-5 with enhanced catalytic performance for methanol to aromatics reaction. Catalysis Science & Technology, 2014, 4(11): 3840–3844 Liu Z, Wu D, Ren S, Chen X, Qiu M, Wu X, Yang C, Zeng G, Sun Y. Solvent-free synthesis of c-axis oriented ZSM-5 crystals with enhanced methanol to gasoline catalytic activity. ChemCatChem, 2016, 8(21): 3317–3322 Verboekend D, Pérez-Ramírez J. Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 2011, 1 (6): 879–890 Chal R, Gerardin C, Bulut M, Donk S. Cheminform abstract: Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81 Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. ChemInform, 2016, 45(12): 3353–3376 Sun M, Chen C, Chen L, Su B. Hierarchically porous materials: Synthesis strategies and emerging applications. Frontiers of Chemical Science and Engineering, 2016, 10(3): 301–347 Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. Journal of Catalysis, 2008, 258 (1): 243–249 Dyballa M, Obenaus U, Rosenberger M, Fischer A, Jakob H, Klemm E, Hunger M. Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion. Microporous and Mesoporous Materials, 2016, 233: 26–30 Schmidt F, Lohe M R, Büchner B, Giordanino F, Bonino F, Kaskel S. Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants. Microporous and Mesoporous Materials, 2013, 165: 148–157 Tempelman C H L, Rodrigues V O, Eck E R H, Magusin P C M M, Hensen E J M. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization. Microporous and Mesoporous Materials, 2015, 203: 259–273 Ong L H, Dömök M, Olindo R, Veen A C, Lercher J A. Dealumination of HZSM-5 via steam-treatment. Microporous and Mesoporous Materials, 2012, 164: 9–20 Zhao L, Shen B, Gao J, Xu C. Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. Journal of Catalysis, 2008, 258(1): 228–234 Gopalakrishnan S, Zampieri A, Schwieger W. Mesoporous ZSM-5 zeolites via alkali treatment for the direct hydroxylation of benzene to phenol with N2O. Journal of Catalysis, 2008, 260(1): 193–197 Xing J, Song L, Zhang C, Zhou M, Yue L, Li X. Effect of acidity and porosity of alkali-treated ZSM-5 zeolite on eugenol hydrodeoxygenation. Catalysis Today, 2015, 258(1): 90–95 Qi R, Fu T, Wan W, Li Z. Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction. Fuel Processing Technology, 2016, 155: 191–199 Svelle S, Sommer L, Barbera K, Vennestrøm P N R, Olsbye U, Lillerud K P, Bordiga S, Pan Y, Beato P. How defects and crystal morphology control the effects of desilication. Catalysis Today, 2011, 168(1): 38–47 Groen J C, Zhu W, Brouwer S, Huynink S J, Kapteijn F K, Moulijn J A, Pérez-Ramírez J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. Journal of the American Chemical Society, 2007, 129(2): 355–360 Groen J C, Peffer L A A, Moulijn J A, Pérez-Ramírez J. Mechanism of hierarchical porosity development in MFI zeolites bydesilication: the role of aluminium as a pore-directing agent. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 11(17): 4983–4994 Groen J C, Jansen C J, Moulijn J A, Pérez-Ramírez J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. Journal of Physical Chemistry B, 2004, 35(45): 13062–13065 Groen J C, Moulijn J A, Pérez-Ramírez J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16(22): 2121–2131 Yang S, Yu C, Yu L, Miao S, Zou M, Jin C, Zhang D, Xu L, Huang S. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites. Angewandte Chemie, 2017, 129(41): 12553–12556 Parker W O, Angelis A, Flego C, Millini R, Perego C, Zanardi S. Unexpected destructive dealumination of zeolite beta by silylation. Journal of Physical Chemistry C, 2010, 114(18): 8459–8468 Wagner G W, Fry R A. Observation of distinct surface AlIV sites and phosphonate binding modes in g-alumina and concrete by high-field 27Al and 31P MAS NMR. Journal of Physical Chemistry C, 2009, 113(30): 13352–13357 Wei Z, Chen L, Cao Q, Wen Z, Zhou Z, Xu Y, Zhu X. Steamed Zn/ ZSM-5 catalysts for improved methanol aromatization with high stability. Fuel Processing Technology, 2017, 162: 66–77 Verboekend D, Mitchell S, Milina M, Groen J C, Pérez-Ramírez J. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication. Journal of Physical Chemistry C, 2011, 115 (29): 14193–14203 Li Y, Wen Z, Wei Z, Yang F, Zhu X. Study on catalytic alkylation of benzene with methanol over ZSM-22 and ZSM-35. China Petroleum Processing and Petrochemical Technology, 2017, 19(4): 38–46 (in Chinese) Zhu H, Liu Z, Kong D, Wang Y, Xie Z. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent. Journal of Physical Chemistry C, 2008, 112(44): 17257–17264 Castaño P, Elordi G, Olazar M, Aguayoa T A, Pawelec B, Bilbao J. Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene. Applied Catalysis B: Environmental, 2011, 104(1): 91–100 Rojo-Gama D, Signorile M, Bonino F, Bordiga S, Olsbye U, Lillerud K P, Beato P, Svelle S. Structure-deactivation relationships in zeolites during the methanol-to-hydrocarbons reaction: Complementary assessments of the coke content. Journal of Catalysis, 2017, 351: 33–48 Vogelaar B M, Langeveld A D, Eijsbouts S, Moulijn J A. Analysis of coke deposition profiles in commercial spent hydroprocessing catalysts using Raman spectroscopy. Fuel, 2007, 86(7): 1122–1129 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review. B, 2000, 61 (20): 14095–14107