De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis

Nature Protocols - Tập 8 Số 8 - Trang 1494-1512 - 2013
Brian J. Haas1, Alexie Papanicolaou2, Moran Yassour1, Manfred Grabherr3, Philip D. Blood4, Joshua C. Bowden5, Matthew Brian Couger6, David Eccles7, Bo Li8, Matthias Lieber9, Matthew D. MacManes10, Michael Ott2, Joshua Orvis11, Nathalie Pochet12, Francesco Strozzi13, Nathan T. Weeks14, Rick Westerman15, Thomas William16, Colin N. Dewey8, Robert Henschel17, Richard D. LeDuc17, Nir Friedman18, Aviv Regev19
1Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
2Commonwealth Scientific and Industrial Research Organisation (CSIRO) Ecosystem Sciences, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia
3Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
4Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
5CSIRO Information Management & Technology, St. Lucia, Queensland, Australia
6Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
7Genomics Research Centre, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
8Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin, USA
9Center for Information Services and High-performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
10California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, USA
11Institute for Genome Sciences, Baltimore, Maryland, USA
12Department of Plant Systems Biology, Department of Plant Biotechnology and Bioinformatics, Vlaams Instituut voor Biotechnologie (VIB), Ghent University, Ghent, Belgium
13Parco Tecnologico Padano, Località Cascina Codazza, Lodi, Italy
14United States Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, Iowa, USA
15Genomics facility, Purdue University, West Lafayette, Indiana, USA
16GWT-TUD GmbH, Saxony, Germany
17Research Technologies Division, University Information Technology Services, Indiana University, Bloomington, Indiana, USA
18The Selim and Rachel Benin School of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel
19Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

Haas, B.J. & Zody, M.C. Advancing RNA-seq analysis. Nat. Biotechnol. 28, 421–423 (2010).

Martin, J.A. & Wang, Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 12, 671–682 (2011).

Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

Guttman, M. et al. Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010).

Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909–912 (2010).

Schulz, M.H., Zerbino, D.R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086–1092 (2012).

Grabherr, M.G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

Duan, J., Xia, C., Zhao, G., Jia, J. & Kong, X. Optimizing de novo common wheat transcriptome assembly using short-read RNA-seq data. BMC Genomics 13, 392 (2012).

Xu, D.L. et al. De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genomics 13, 133 (2012).

Zhao, Q.Y. et al. Optimizing de novo transcriptome assembly from short-read RNA-seq data: a comparative study. BMC Bioinformatics 12 (suppl. 14), S2 (2011).

Henschel, R. et al. Trinity RNA-seq assembler performance optimization. XSEDE '12 Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: bridging from the eXtreme to the campus and beyond (Chicago, Illinois, USA, July 16–20, 2012) http://dx.doi.org/10.1145/2335755.2335842 (2012).

Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinformatics 11, 94 (2010).

Fang, Z. & Cui, X. Design and validation issues in RNA-seq experiments. Briefi. Bioinform. 12, 280–287 (2011).

Auer, P.L. & Doerge, R.W. Statistical design and analysis of RNA sequencing data. Genetics 185, 405–416 (2010).

Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10, 71–73 (2013).

Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

Dillies, M.A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. http://dx.doi.org/10.1093/bib/bbs046 (17 September 2012).

Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

Abeel, T., Van Parys, T., Saeys, Y., Galagan, J. & Van de Peer, Y. GenomeView: a next-generation genome browser. Nucleic Acids Res. 40, e12 (2012).

Liu, L. et al. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 251364 (2012).

Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

Rothberg, J.M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).

Van Belleghem, S.M., Roelofs, D., Van Houdt, J. & Hendrickx, F. De novo transcriptome assembly and SNP discovery in the wing polymorphic salt marsh beetle Pogonus chalceus (Coleoptera, Carabidae). PLoS ONE 7, e42605 (2012).

Kleinman, C.L. & Majewski, J. Comment on “Widespread RNA and DNA sequence differences in the human transcriptome”. Science 335, 1302 (2012).

Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

Pounds, S.B., Gao, C.L. & Zhang, H. Empirical Bayesian selection of hypothesis testing procedures for analysis of sequence count expression data. Stat. Appl. Genet. Mol. Biol. http://dx.doi.org/10.1515/1544-6115.1773 (2012).

Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A. & Conesa, A. Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213–2223 (2011).

Cumbie, J.S. et al. GENE-counter: a computational pipeline for the analysis of RNA-seq data for gene expression differences. PLoS ONE 6, e25279 (2011).

Hardcastle, T.J. & Kelly, K.A. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11, 422 (2010).

Leng, N. et al. An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035–1043 (2012).

Tuna, M. & Amos, C.I. Genomic sequencing in cancer. Cancer Lett. http://dx.doi.org/doi:10.1016/j.canlet.2012.11.004 (2012).

Rhind, N. et al. Comparative functional genomics of the fission yeasts. Science 332, 930–936 (2011).

Kumar, S. & Blaxter, M.L. Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 11, 571 (2010).

Papanicolaou, A., Stierli, R., Ffrench-Constant, R.H. & Heckel, D.G. Next generation transcriptomes for next generation genomes using est2assembly. BMC Bioinformatics 10, 447 (2009).

Lohse, M. et al. RobiNA: a user-friendly, integrated software solution for RNA-seq–based transcriptomics. Nucleic Acids Res. 40, W622–W627 (2012).

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17 http://journal.embnet.org/index.php/embnetjournal/article/view/200/479 (2011).

Haas, B.J., Chin, M., Nusbaum, C., Birren, B.W. & Livny, J. How deep is deep enough for RNA-seq profiling of bacterial transcriptomes? BMC Genomics 13, 734 (2012).

Brown, C.T., Howe, A., Zhang, Q., Pryrkosz, A.B. & Brom, T.H. A reference-free algorithm for computational normalization of shotgun sequencing data. arXiv:1203.4802 [q-bio.GN] (2012).

Borodina, T., Adjaye, J. & Sultan, M. A strand-specific library preparation protocol for RNA sequencing. Methods Enzymol. 500, 79–98 (2011).

Parkhomchuk, D. et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 37, e123 (2009).

Sung, W.K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012).