De- “bug”-ing the microbiome in lung cancer

Pakhi Birla1,2, Fyza Y. Shaikh1,2
1The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, USA
2Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lung and bronchus cancer — Cancer Stat Facts. https://seer.cancer.gov/statfacts/html/lungb.html. Accessed 12 Jan 2022.

Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB (2016) The microbiome and the respiratory tract. Annual Review of Physiology, 78

Rogers, G. B., Carroll, M. P., Serisier, D. J., et al. (2004). Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. Journal of Clinical Microbiology, 42. https://doi.org/10.1128/JCM.42.11.5176-5183.2004

Rogers, G. B., Hart, C. A., Mason, J. R., et al. (2003). Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. Journal of Clinical Microbiology, 41. https://doi.org/10.1128/JCM.41.8.3548-3558.2003

Hilty, M., Burke, C., Pedro, H., et al. (2010). Disordered microbial communities in asthmatic airways. PLoS ONE, 5. https://doi.org/10.1371/journal.pone.0008578

Zhang, Q., Cox, M., Liang, Z., et al. (2016). Airway microbiota in severe asthma and relationship to asthma severity and phenotypes. PLoS ONE, 11. https://doi.org/10.1371/JOURNAL.PONE.0152724

Loverdos K, Bellos G, Kokolatou L, et al (2019) Lung microbiome in asthma: Current perspectives. Journal of Clinical Medicine, 8

Pragman, A. A., Kim, H. B., Reilly, C. S., et al. (2012). The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE, 7. https://doi.org/10.1371/journal.pone.0047305

Sears, C. L., & Garrett, W. S. (2014). Microbes, microbiota, and colon cancer. Cell Host & Microbe, 15, 317–328. https://doi.org/10.1016/J.CHOM.2014.02.007

Reinhold, L., Möllering, A., Wallis, S., et al. (2020). Dissimilarity of airway and lung tissue microbiota in smokers undergoing surgery for lung cancer. Microorganisms, 8. https://doi.org/10.3390/microorganisms8060794

Erb-Downward, J. R., Thompson, D. L., Han, M. K., et al. (2011). Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE, 6. https://doi.org/10.1371/JOURNAL.PONE.0016384

Charlson, E. S., Bittinger, K., Haas, A. R., et al. (2011). Topographical continuity of bacterial populations in the healthy human respiratory tract. American Journal of Respiratory and Critical Care Medicine, 184, 957–963. https://doi.org/10.1164/RCCM.201104-0655OC

Segal, L. N., Alekseyenko, A. v., Clemente, J. C., et al. (2013). Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. https://doi.org/10.1186/2049-2618-1-19

Dickson, R. P., Erb-Downward, J. R., Freeman, C. M., et al. (2017). Bacterial topography of the healthy human lower respiratory tract. mBio, 8. https://doi.org/10.1128/MBIO.02287-16/SUPPL_FILE/MBO001173194S1.DOC

Morris, A., Beck, J. M., Schloss, P. D., et al. (2013). Comparison of the respiratory microbiome in healthy nonsmokers and smokers. American Journal of Respiratory and Critical Care Medicine, 187, 1067–1075. https://doi.org/10.1164/RCCM.201210-1913OC/SUPPL_FILE/DISCLOSURES.PDF

Bassis, C. M., Erb-Downward, J. R., Dickson, R. P., et al. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio, 6. https://doi.org/10.1128/MBIO.00037-15

Budden, K. F., Gellatly, S. L., Wood, D. L. A., et al. (2016). Emerging pathogenic links between microbiota and the gut–lung axis. Nature Reviews Microbiology, 15, 55–63. https://doi.org/10.1038/nrmicro.2016.142

Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30, 492–506. https://doi.org/10.1038/s41422-020-0332-7

Sommariva, M., le Noci, V., Bianchi, F., et al. (2020). The lung microbiota: Role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cellular and Molecular Life Sciences, 77, 2739. https://doi.org/10.1007/S00018-020-03452-8

Segal LN, Clemente JC, Tsay JCJ, et al (2016) Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nature Microbiology, 1. imm

Tsay, J. C. J., Wu, B. G., Sulaiman, I., et al. (2021). Lower airway dysbiosis affects lung cancer progression. Cancer Discovery, 11, 293–307. https://doi.org/10.1158/2159-8290.CD-20-0263

Dumont-Leblond, N., Veillette, M., Racine, C., et al. (2021). Non-small cell lung cancer microbiota characterization: Prevalence of enteric and potentially pathogenic bacteria in cancer tissues. PLoS ONE, 16, e0249832. https://doi.org/10.1371/JOURNAL.PONE.0249832

Bingula, R., Filaire, E., Molnar, I., et al. (2020). Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: A cross-sectional clinical trial. Respiratory Research, 21. https://doi.org/10.1186/S12931-020-01392-2

Dickson, R. P., Erb-Downward, J. R., Freeman, C. M., et al. (2015). Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Annals of the American Thoracic Society, 12, 821–830. https://doi.org/10.1513/ANNALSATS.201501-029OC

Fox, G. E., Magrum, L. J., & Balch, W. E. (1977). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A, 74. https://doi.org/10.1073/pnas.74.10.4537

Millares, L., Pérez-Brocal, V., Ferrari, R., et al. (2015). Functional metagenomics of the bronchial microbiome in COPD. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0144448

Sulaiman, I., Wu, B. G., Li, Y., et al. (2021). Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. European Respiratory Journal, 58. https://doi.org/10.1183/13993003.03434-2020

Aogáin, M., Lau, K. J. X., Cai, Z., et al. (2020). Metagenomics reveals a core macrolide resistome related to microbiota in chronic respiratory disease. American Journal of Respiratory and Critical Care Medicine, 202https://doi.org/10.1164/rccm.201911-2202OC

Lee, S. H., Sung, J. Y., Yong, D., et al. (2016). Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer, 102. https://doi.org/10.1016/j.lungcan.2016.10.016

Zhuo, M., An, T., Zhang, C., & Wang, Z. (2020). Characterization of microbiota in cancerous lung and the contralateral non-cancerous lung within lung cancer patients. Frontiers in Oncology, 10. https://doi.org/10.3389/FONC.2020.01584

Cheng, C., Wang, Z., Wang, J., et al. (2020). Characterization of the lung microbiome and exploration of potential bacterial biomarkers for lung cancer. Translational Lung Cancer Research, 9, 693–704. https://doi.org/10.21037/TLCR-19-590

Jin, J., Gan, Y., Liu, H., et al. (2019). Diminishing microbiome richness and distinction in the lower respiratory tract of lung cancer patients: A multiple comparative study design with independent validation. Lung Cancer, 136. https://doi.org/10.1016/j.lungcan.2019.08.022

Liu, Y., O’Brien, J. L., Ajami, N. J., et al. (2018). Lung tissue microbial profile in lung cancer is distinct from emphysema. American Journal of Cancer Research, 8, 1775.

Mao, Q., Ma, W., Wang, Z., et al. (2020). Differential flora in the microenvironment of lung tumor and paired adjacent normal tissues. Carcinogenesis, 41, 1094–1103. https://doi.org/10.1093/CARCIN/BGAA044

Najafi, S., Abedini, F., Azimzadeh Jamalkandi, S., et al. (2021). The composition of lung microbiome in lung cancer: A systematic review and meta-analysis. BMC Microbiology, 21. https://doi.org/10.1186/S12866-021-02375-Z

Poore, G. D., Kopylova, E., Zhu, Q., et al. (2020). Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature, 579, 567. https://doi.org/10.1038/S41586-020-2095-1

Nejman, D., Livyatan, I., Fuks, G., et al. (2020). The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science, 368, 973. https://doi.org/10.1126/SCIENCE.AAY9189

Yan, X., Yang, M., Liu, J., et al. (2015). Discovery and validation of potential bacterial biomarkers for lung cancer. American Journal of Cancer Research, 5, 3111.

Yang, J., Mu, X., Wang, Y., et al. (2018). Dysbiosis of the salivary microbiome is associated with non-smoking female lung cancer and correlated with immunocytochemistry markers. Frontiers in Oncology, 8, 520. https://doi.org/10.3389/FONC.2018.00520/FULL

Zhang, W., Luo, J., Dong, X., et al. (2019). Salivary microbial dysbiosis is associated with systemic inflammatory markers and predicted oral metabolites in non-small cell lung cancer patients. Journal of Cancer, 10, 1651. https://doi.org/10.7150/JCA.28077

Lim, M. Y., Hong, S., Hwang, K. H., et al. (2021). Diagnostic and prognostic potential of the oral and gut microbiome for lung adenocarcinoma. Clinical and Translational Medicine, 11. https://doi.org/10.1002/CTM2.508

Cameron, S. J. S., Lewis, K. E., Huws, S. A., et al. (2017). A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS ONE, 12. https://doi.org/10.1371/JOURNAL.PONE.0177062

Zheng, X., Sun, X., Liu, Q., et al. (2020). The composition alteration of respiratory microbiota in lung cancer. 38:158–168.https://doi.org/10.1080/07357907.2020.1732405

Zhang, W. Q., Zhao, S. K., Luo, J. W., et al. (2018). Alterations of fecal bacterial communities in patients with lung cancer. American Journal of Translational Research, 10, 3171.

Fessler, J., Matson, V., & Gajewski, T. F. (2019). Exploring the emerging role of the microbiome in cancer immunotherapy. Journal for ImmunoTherapy of Cancer, 7, 108. https://doi.org/10.1186/S40425-019-0574-4

Oster, P., Vaillant, L., Riva, E., et al. (2021). Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut. https://doi.org/10.1136/GUTJNL-2020-323392

Hosgood, H. D., Cai, Q., Hua, X., et al. (2021). Variation in oral microbiome is associated with future risk of lung cancer among never-smokers. Thorax, 76, 256. https://doi.org/10.1136/THORAXJNL-2020-215542

Leng, Q., Holden, V. K., Deepak, J., et al. (2021). Microbiota biomarkers for lung cancer. Diagnostics, 11, 407. https://doi.org/10.3390/DIAGNOSTICS11030407

Zheng, Y., Fang, Z., Xue, Y., et al. (2020). Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 11, 1030–1042. https://doi.org/10.1080/19490976.2020.1737487

Lu, H., Gao, N. L., Tong, F., et al. (2021). Alterations of the human lung and gut microbiomes in non-small cell lung carcinomas and distant metastasis. Microbiology Spectrum, 9. https://doi.org/10.1128/spectrum.00802-21

Yu, G., Gail, M. H., Consonni, D., et al. (2016). Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biology, 17. https://doi.org/10.1186/S13059-016-1021-1

Greathouse, K. L., White, J. R., Vargas, A. J., et al. (2018). Interaction between the microbiome and TP53 in human lung cancer. Genome Biology, 19. https://doi.org/10.1186/S13059-018-1501-6

Colman, G., Beighton, D., Chalk, A. J., & Wake, S. (1976). Cigarette smoking and the microbial flora of the mouth*. Australian Dental Journal, 21, 111–118. https://doi.org/10.1111/J.1834-7819.1976.TB02833.X

Ertel, A., Eng, R., & Smith, S. M. (1991). The differential effect of cigarette smoke on the growth of bacteria found in humans. Chest, 100, 628–630. https://doi.org/10.1378/CHEST.100.3.628

Wu, J., Peters, B. A., Dominianni, C., et al. (2016). Cigarette smoking and the oral microbiome in a large study of American adults. The ISME Journal, 10, 2435. https://doi.org/10.1038/ISMEJ.2016.37

Einarsson, G. G., Comer, D. M., McIlreavey, L., et al. (2016). Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax, 71, 795–803. https://doi.org/10.1136/THORAXJNL-2015-207235

Peters, B. A., Hayes, R. B., Goparaju, C., et al. (2019). The microbiome in lung cancer tissue and recurrence-free survival. Cancer Epidemiology, Biomarkers & Prevention, 28, 731–740. https://doi.org/10.1158/1055-9965.EPI-18-0966

Chang, Y. S., Hsu, M. H., Tu, S. J., et al. (2021). Metatranscriptomic analysis of human lung metagenomes from patients with lung cancer. Genes (Basel), 12. https://doi.org/10.3390/GENES12091458

Patnaik, S. K., Cortes, E. G., Kannisto, E. D., et al. (2021). Lower airway bacterial microbiome may influence recurrence after resection of early-stage non-small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery, 161, 419-429.e16. https://doi.org/10.1016/J.JTCVS.2020.01.104

Tsay, J. C. J., Wu, B. G., Badri, M. H., et al. (2018). Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. American Journal of Respiratory and Critical Care Medicine, 198, 1188–1198. https://doi.org/10.1164/RCCM.201710-2118OC

Shacter, E., Weitzman, S. A. (2002). Chronic inflammation and cancer. Oncology (Williston Park), 16.

Zhao, H., Wu, L., Yan, G., et al. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. Signal transduction and targeted therapy, 6, 1–46. https://doi.org/10.1038/s41392-021-00658-5

Gomes, M., Teixeira, A. L., Coelho, A., et al. (2014). The role of inflammation in lung cancer. Advances in Experimental Medicine and Biology, 816, 1–23. https://doi.org/10.1007/978-3-0348-0837-8_1

Ma, Q. Y., Huang, D. Y., Zhang, H. J., et al. (2017). Upregulation of bacterial-specific Th1 and Th17 responses that are enriched in CXCR5 + CD4 + T cells in non-small cell lung cancer. International Immunopharmacology, 52, 305–309. https://doi.org/10.1016/J.INTIMP.2017.09.024

Kovaleva, O., Podlesnaya, P., Rashidova, M., et al. (2020). Lung microbiome differentially impacts survival of patients with non-small cell lung cancer depending on tumor stroma phenotype. Biomedicines, 8. https://doi.org/10.3390/BIOMEDICINES8090349

Zheng, L., Xu, J., Sai, B., et al. (2020). Microbiome related cytotoxically active CD8+ TIL are inversely associated with lung cancer development. Frontiers in Oncology, 10, 2732. https://doi.org/10.3389/FONC.2020.531131/BIBTEX

Ribot, J. C., Lopes, N., & Silva-Santos, B. (2021). γδ T cells in tissue physiology and surveillance. Nature Reviews Immunology, 21,

Jin, C., Lagoudas, G. K., Zhao, C., et al. (2019). Commensal microbiota promote lung cancer development via γδ T cells. Cell, 176, 998. https://doi.org/10.1016/J.CELL.2018.12.040

Ji, Q., Perchellet, A., & Goverman, J. M. (2010). Viral infection triggers central nervous system autoimmunity via activation of dual TCR-expressing CD8+ T cells. Nature Immunology, 11, 628. https://doi.org/10.1038/NI.1888

Balachandran, V. P., Łuksza, M., Zhao, J. N., et al. (2017). Identification of unique neoantigen qualities in long term pancreatic cancer survivors. Nature, 551, 512. https://doi.org/10.1038/NATURE24462

Bradley, C. P., Teng, F., Felix, K. M., et al. (2017). Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host & Microbe, 22, 697-704.e4. https://doi.org/10.1016/J.CHOM.2017.10.007

Fluckiger, A., Daillère, R., Sassi, M., et al. (1979). (2020) Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal bacteriophage. Science, 369, 936–942. https://doi.org/10.1126/SCIENCE.AAX0701/SUPPL_FILE/AAX0701_FLUCKIGER_SM.PDF

Fitzgerald, K. A., & Kagan, J. C. (2020). Toll-like receptors and the control of immunity. Cell, 180, 1044–1066. https://doi.org/10.1016/J.CELL.2020.02.041

Medzhitov, R., Preston-Hurlburt, P., & Janeway, C. A. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–397. https://doi.org/10.1038/41131

le Noci, V., Bernardo, G., Bianchi, F., et al. (2021). Toll like receptors as sensors of the tumor microbial dysbiosis: Implications in cancer progression. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/FCELL.2021.732192

Zhang, Y. B., He, F. L., Fang, M., et al. (2009). Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Molecular Biology Reports, 36, 1475–1481. https://doi.org/10.1007/S11033-008-9338-9/FIGURES/5

Wang, K., Wang, J., Wei, F., et al. (2017). Expression of TLR4 in non-small cell lung cancer is associated with PD-L1 and poor prognosis in patients receiving pulmonectomy. Frontiers in Immunology, 8. https://doi.org/10.3389/FIMMU.2017.00456

Hao, B., Chen, Z., Bi, B., et al. (2018). Role of TLR4 as a prognostic factor for survival in various cancers: a meta-analysis. Oncotarget, 9, 13088. https://doi.org/10.18632/ONCOTARGET.24178

Chatterjee, S., Crozet, L., Damotte, D., et al. (2014). TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non–small cell lung cancer. Cancer Research, 74, 5008–5018. https://doi.org/10.1158/0008-5472.CAN-13-2698

Zhou, H., Chen, J. H., Hu, J., et al. (2014). High expression of Toll-like receptor 5 correlates with better prognosis in non-small-cell lung cancer: An anti-tumor effect of TLR5 signaling in non-small cell lung cancer. Journal of Cancer Research and Clinical Oncology, 140, 633–643. https://doi.org/10.1007/S00432-014-1616-4/FIGURES/5

Bianchi, F., Milione, M., Casalini, P., et al. (2019). Toll-like receptor 3 as a new marker to detect high risk early stage non-small-cell lung cancer patients. Science and Reports, 9. https://doi.org/10.1038/S41598-019-50756-2

Mirzaei, R., Afaghi, A., Babakhani, S., et al. (2021). Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomedicine & Pharmacotherapy, 139, 111619. https://doi.org/10.1016/J.BIOPHA.2021.111619

Yang, J. J., Yu, D., Xiang, Y. B., et al. (2020). Association of dietary fiber and yogurt consumption with lung cancer risk: A pooled analysis. JAMA Oncology, 6. https://doi.org/10.1001/JAMAONCOL.2019.4107

Rifkin, S. B., Giardiello, F. M., Zhu, X., et al. (2020). Yogurt consumption and colorectal polyps. British Journal of Nutrition, 124, 80. https://doi.org/10.1017/S0007114520000550

Koh, A., de Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 165, 1332–1345. https://doi.org/10.1016/J.CELL.2016.05.041

Gui, Q., Li, H., Wang, A., et al. (2020). The association between gut butyrate-producing bacteria and non-small-cell lung cancer. Journal of Clinical Laboratory Analysis, 34. https://doi.org/10.1002/JCLA.23318

Botticelli, A., Vernocchi, P., Marini, F., et al. (2020). Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. Journal of Translational Medicine, 18, 1–10. https://doi.org/10.1186/S12967-020-02231-0/FIGURES/2

Zhao, F., An, R., Wang, L., et al. (2021). Specific gut microbiome and serum metabolome changes in lung cancer patients. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.725284

Chen, L., Zhou, X., Wang, Y., et al. (2021). Propionate and butyrate produced by gut microbiota after probiotic supplementation attenuate lung metastasis of melanoma cells in mice. Molecular Nutrition and Food Research, 65. https://doi.org/10.1002/mnfr.202100096

Xiao, X., Cao, Y., & Chen, H. (2018). Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells. Journal of Cellular Biochemistry, 119, 3563–3573. https://doi.org/10.1002/JCB.26547

Kim, K., Kwon, O., Ryu, T. Y., et al. (2019). Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Molecular Medicine Reports, 20, 1569–1574. https://doi.org/10.3892/MMR.2019.10431

Chen, M., Jiang, W., Xiao, C., et al. (2020). Sodium butyrate combined with docetaxel for the treatment of lung adenocarcinoma A549 cells by targeting Gli1. Oncotargets and Therapy, 13, 8861–8875. https://doi.org/10.2147/OTT.S252323

Trompette, A., Gollwitzer, E. S., Yadava, K., et al. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 20, 159–166. https://doi.org/10.1038/nm.3444

Thorburn, A. N., McKenzie, C. I., Shen, S., et al. (2015). Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nature Communications, 6, 1–13. https://doi.org/10.1038/ncomms8320

Haak, B. W., Littmann, E. R., Chaubard, J. L., et al. (2018). Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood, 131, 2978–2986. https://doi.org/10.1182/BLOOD-2018-01-828996

Walter, J., Armet, A. M., Finlay, B. B., & Shanahan, F. (2020). Establishing or exaggerating causality for the gut microbiome: Lessons from human microbiota-associated rodents. Cell, 180, 221–232. https://doi.org/10.1016/J.CELL.2019.12.025