Davis–Wielandt shells of semi-Hilbertian space operators and its applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arias, M.L., Corach, G., Gonzalez, M.C.: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428(7), 1460–1475 (2008)
Arias, M.L., Corach, G., Gonzalez, M.C.: Metric properties of projections in semi-Hilbertian spaces. Integr. Equ. Oper. Theory 62, 11–28 (2008)
Arias, M.L., Corach, G., Gonzalez, M.C.: Lifting properties in operator ranges. Acta Sci. Math. (Szeged) 75(3–4), 635–653 (2009)
Baklouti, H., Feki, K.: On joint spectral radius of commuting operators in Hilbert spaces. Linear Algebra Appl. 557, 455–463 (2018)
Baklouti, H., Feki, K., Ahmed, O.A.M.S.: Joint numerical ranges of operators in semi-Hilbertian spaces. Linear Algebra Appl. 555, 266–284 (2018)
Baklouti, H., Feki, K., Ahmed Mahmoud, S.A.O.: Joint normality of operators in semi-Hilbertian spaces. Linear Multilinear Algebra 68(4), 845–866 (2020)
Barnes, B.A.: The spectral properties of certain linear operators and their extensions. Proc. Am. Math. Soc. 128, 1371–1375 (2000)
Bonsall, F.F., Duncan, J.: Numerical Ranges of Operators on Normed Spaces and of Elements of Banach Algebras. Cambridge University Press, Cambridge (1973)
Chan, J.-T., Chan, K.: An observation about normaloid operators. Oper. Matrices 11(3), 885–890 (2017)
de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehert and Winston, New York (1966)
Douglas, R.G.: On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 17, 413–416 (1966)
Feki, K.: Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. (2020). https://doi.org/10.1007/s43034-020-00064-y
Gustafson, K.E., Rao, D.K.M.: Numerical Range. Universitext. The Field of Values of Linear Operators and Matrices. Springer, New York (1997)
Gustafson, K.: The Toeplitz–Hausdorff theorem of linear operators. Proc. Am. Math. Soc. 25, 203–204 (1970)
Hassi, S., Sebestyén, Z., De Snoo, H.S.V.: On the nonnegative of operator products. Acta Math. Hungar. 109, 1–14 (2005)
Li, C.-K., Poon, Y.-T., Sze, N.-S.: Davis–Wielandt shells of operators, operators and matrices, vol. 2, no. 3, pp. 341–355 (2008)
Mehrazin, M., Amyari, M., Zamani, A.: Numerical radius parallelism of Hilbert space operators. Bull. Iran. Math. Soc. (2019). https://doi.org/10.1007/s41980-019-00295-3
Zamani, A.: $$A$$-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 578, 159–183 (2019)
Zamani, A., Moslehian, M.S., Chien, M.-T., Nakazato, H.: Norm-parallelism and the Davis–Wielandt radius of Hilbert space operators. Linear Multilinear Algebra 67(11), 2147–2158 (2019)
Zamani, A., Moslehian, M.S.: Exact and approximate operator parallelism. Can. Math. Bull. 58(1), 207–224 (2015)
Zamani, A., Moslehian, M.S.: Norm-parallelism in the geometry of Hilbert $$C^*$$-modules. Indag. Math. (N.S.) 27(1), 266–281 (2016)