Davis–Wielandt shells of semi-Hilbertian space operators and its applications

Kais Feki1, Sid Ahmed Ould Ahmed Mahmoud2
1University of Sfax, Sfax, Tunisia
2Mathematical Analysis and Applications Mathematics Department, College of Science, Jouf University, Sakaka, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arias, M.L., Corach, G., Gonzalez, M.C.: Partial isometries in semi-Hilbertian spaces. Linear Algebra Appl. 428(7), 1460–1475 (2008)

Arias, M.L., Corach, G., Gonzalez, M.C.: Metric properties of projections in semi-Hilbertian spaces. Integr. Equ. Oper. Theory 62, 11–28 (2008)

Arias, M.L., Corach, G., Gonzalez, M.C.: Lifting properties in operator ranges. Acta Sci. Math. (Szeged) 75(3–4), 635–653 (2009)

Baklouti, H., Feki, K.: On joint spectral radius of commuting operators in Hilbert spaces. Linear Algebra Appl. 557, 455–463 (2018)

Baklouti, H., Feki, K., Ahmed, O.A.M.S.: Joint numerical ranges of operators in semi-Hilbertian spaces. Linear Algebra Appl. 555, 266–284 (2018)

Baklouti, H., Feki, K., Ahmed Mahmoud, S.A.O.: Joint normality of operators in semi-Hilbertian spaces. Linear Multilinear Algebra 68(4), 845–866 (2020)

Barnes, B.A.: The spectral properties of certain linear operators and their extensions. Proc. Am. Math. Soc. 128, 1371–1375 (2000)

Bonsall, F.F., Duncan, J.: Numerical Ranges of Operators on Normed Spaces and of Elements of Banach Algebras. Cambridge University Press, Cambridge (1973)

Chan, J.-T., Chan, K.: An observation about normaloid operators. Oper. Matrices 11(3), 885–890 (2017)

de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehert and Winston, New York (1966)

Douglas, R.G.: On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 17, 413–416 (1966)

Feki, K.: Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. (2020). https://doi.org/10.1007/s43034-020-00064-y

Givens, W.: Field of values of a matrix. Proc. Am. Math. Soc. 3, 206–209 (1952)

Gustafson, K.E., Rao, D.K.M.: Numerical Range. Universitext. The Field of Values of Linear Operators and Matrices. Springer, New York (1997)

Gustafson, K.: The Toeplitz–Hausdorff theorem of linear operators. Proc. Am. Math. Soc. 25, 203–204 (1970)

Hassi, S., Sebestyén, Z., De Snoo, H.S.V.: On the nonnegative of operator products. Acta Math. Hungar. 109, 1–14 (2005)

Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)

Li, C.K.: C-numerical ranges and C-numerical radii. Linear Multilinear Algebra 37, 51–82 (1994)

Li, C.-K., Poon, Y.-T., Sze, N.-S.: Davis–Wielandt shells of operators, operators and matrices, vol. 2, no. 3, pp. 341–355 (2008)

Mehrazin, M., Amyari, M., Zamani, A.: Numerical radius parallelism of Hilbert space operators. Bull. Iran. Math. Soc. (2019). https://doi.org/10.1007/s41980-019-00295-3

Toeplitz, O.: Das algebraische Analogou zu einem satze von fejer. Math. Z. 2, 187–197 (1918)

Zamani, A.: $$A$$-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 578, 159–183 (2019)

Zamani, A., Moslehian, M.S., Chien, M.-T., Nakazato, H.: Norm-parallelism and the Davis–Wielandt radius of Hilbert space operators. Linear Multilinear Algebra 67(11), 2147–2158 (2019)

Zamani, A., Moslehian, M.S.: Exact and approximate operator parallelism. Can. Math. Bull. 58(1), 207–224 (2015)

Zamani, A., Moslehian, M.S.: Norm-parallelism in the geometry of Hilbert $$C^*$$-modules. Indag. Math. (N.S.) 27(1), 266–281 (2016)