Database system for managing 20,000 20-inch PMTs at JUNO
Tóm tắt
Từ khóa
Tài liệu tham khảo
F. Liu, F. Yi, J. Jia et al., High resolution full-spectrum water Raman lidar. Sci. China Technol. Sci. 55, 1224–1229 (2012). https://doi.org/10.1007/s11431-012-4778-9
Y. Zhou, Z. Sun, Y. Yu et al., A versatile test bench for photomultiplier tube characterization and its application in the DAMPE-PSD. Nucl. Sci. Tech. 27, 70 (2016). https://doi.org/10.1007/s41365-016-0072-z
E.L. Chen, L. Zhao, L. Yu et al., Test system of the front-end readout for an application-specific integrated circuit for the water Cherenkov detector array at the large high-altitude air shower observatory. Nucl. Sci. Tech. 28, 81 (2017). https://doi.org/10.1007/s41365-017-0238-3
J.N. Dong, Y.L. Zhang, Z.Y. Zhang et al., Position-sensitive plastic scintillator detector with WLS-fiber readout. Nucl. Sci. Tech. 29, 117 (2018). https://doi.org/10.1007/s41365-018-0449-2
G. Ambrosi, S. Bartocci, L. Basara et al., The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts. Sci. China Technol. Sci. 61, 643–652 (2018). https://doi.org/10.1007/s11431-018-9234-9
R. Zhang, D.W. Cao, C.W. Loh et al., Using monochromatic light to measure attenuation length of liquid scintillator solvent LAB. Nucl. Sci. Tech. 30, 30 (2019). https://doi.org/10.1007/s41365-019-0542-1
J.H. Liu, Z. Ge, Q. Wang et al., Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF. Nucl. Sci. Tech. 30, 152 (2019). https://doi.org/10.1007/s41365-019-0676-1
P. Juyal, K.L. Giboni, X.D. Ji et al., On proportional scintillation in very large liquid xenon detectors. Nucl. Sci. Tech. 31, 93 (2020). https://doi.org/10.1007/s41365-020-00797-4
X.L. Qian, H.Y. Sun, C. Liu et al., Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment. Nucl. Sci. Tech. 32, 51 (2021). https://doi.org/10.1007/s41365-021-00882-2
L.J. Wen, M. He, Y.F. Wang et al., A quantitative approach to select PMTs for large detectors. Nucl. Instrum. Meth. A 947, 162766 (2019). https://doi.org/10.1016/j.nima.2019.162766
Z. Djurcic et al., [JUNO], JUNO Conceptual Design Report. arXiv:1508.07166 [physics.ins-det]
F. An, G.P. An, Q. An et al., [JUNO], Neutrino physics with JUNO. J. Phys. G (2016). https://doi.org/10.1088/0954-3899/43/3/030401
A. Abusleme et al., [JUNO], JUNO physics and detector. arXiv:2104.02565 [hep-ex]
Z. You, K. Li, Y. Zhang et al., A ROOT based event display software for JUNO. JINST 13, T02002 (2018). https://doi.org/10.1088/1748-0221/13/02/T02002
K. Li, Z. You, Y. Zhang et al., GDML based geometry management system for offline software in JUNO. Nucl. Instrum. Meth. A 908, 43–48 (2018). https://doi.org/10.1016/j.nima.2018.08.008
J. Zhu, Z. You, Y. Zhang et al., A method of detector and event visualization with Unity in JUNO. JINST 14, T01007 (2019). https://doi.org/10.1088/1748-0221/14/01/T01007
Z. Li, Y. Zhang, G. Cao et al., Event vertex and time reconstruction in large-volume liquid scintillator detectors. Nucl. Sci. Tech. 32, 49 (2021). https://doi.org/10.1007/s41365-021-00885-z
Y. Wang, L. Zong, Y. Heng et al., Application of an acrylic vessel supported by a stainless-steel truss for the JUNO central detector. Sci. China Technol. Sci. 57, 2523–2529 (2014). https://doi.org/10.1007/s11431-014-5715-x
G.L. Zhu, J.L. Liu, Q. Wang et al., Ultrasonic positioning system for the calibration of central detector. Nucl. Sci. Tech. 30, 5 (2019). https://doi.org/10.1007/s41365-018-0530-x
C. Cao, J. Xu, M. He et al., Mass production and characterization of 3-inch PMTs for the JUNO experiment. Nucl. Instrum. Meth. A 1005, 165347 (2021). https://doi.org/10.1016/j.nima.2021.165347
A. Yang, Z. Qin, Z. Wang et al., Study and removal of the flash from the HV divider of the 20-inch PMT for JUNO. JINST 15, T04006 (2020). https://doi.org/10.1088/1748-0221/15/04/T04006
B. Wonsak, A. Tietzsch, T. Sterr et al., A container-based facility for testing 20’000 20-inch PMTs for JUNO. JINST 16, T08001 (2021). https://doi.org/10.1088/1748-0221/16/08/T08001
A. F. Tietzsch, Development, installation and operation of a container-based mass testing system for 20-inch photomultiplier tubes for JUNO. Dissertation, Eberhard Karls Universität Tübingen, 2020. https://doi.org/10.15496/publikation-49875
Z. Qian, V. Belavin, V. Bokov et al., Vertex and energy reconstruction in JUNO with machine learning methods. Nucl. Instrum. Meth. A 1010, 165527 (2021). https://doi.org/10.1016/j.nima.2021.165527
X.C. Lei, Y.K. Heng, S. Qian et al., Evaluation of new large area PMT with high quantum efficiency. Chin. Phys. C 40, 026002 (2016). https://doi.org/10.1088/1674-1137/40/2/026002
D.H. Liao, H.B. Liu, Y.X. Zhou et al., Study of TTS for a 20-inch dynode PMT. Chin. Phys. C 41, 076001 (2017). https://doi.org/10.1088/1674-1137/41/7/076001
H.Q. Zhang, Z.M. Wang, F.J. Luo et al., Gain and charge response of 20’’ MCP and dynode PMTs. JINST 16, T08009 (2021). https://doi.org/10.1088/1748-0221/16/08/T08009
W.W. Wang, S. Qian, M. Qi et al., Aging behavior of large area MCP–PMT. Nucl. Sci. Tech. 27, 38 (2016). https://doi.org/10.1007/s41365-016-0046-1
Y. Wang, S. Qian, T. Zhao et al., A new design of large area MCP-PMT for the next generation neutrino experiment. Nucl. Instrum. Meth. A 695, 113–117 (2012). https://doi.org/10.1016/j.nima.2011.12.085
L. Ren, J. Sun, S. Si et al., Study on the improvement of the 20-inch microchannel plate photomultiplier tubes for neutrino detector. Nucl. Instrum. Meth. A 977, 164333 (2020). https://doi.org/10.1016/j.nima.2020.164333
Y. Zhu, Y. Cao, F. Gao et al., The mass production and batch test result of 20’’ MCP-PMTs. Nucl. Instrum. Meth. A 952, 162002 (2020). https://doi.org/10.1016/j.nima.2019.03.057
Q. Wu, S. Qian, Y.Q. Cao et al., The mass production and batch test result of the 15K 20-inch MCP-PMT in NNVT for JUNO. PoS ICHEP2020, 771 (2021). https://doi.org/10.22323/1.390.0771
N. Anfimov, [JUNO], Large photocathode 20-inch PMT testing methods for the JUNO experiment. JINST 12, C06017 (2017). https://doi.org/10.1088/1748-0221/12/06/C06017
Z. Qin, Status of the 20-in. PMT instrumentation for the JUNO experiment. Springer Proc. Phys. 213, 285–293 (2018). https://doi.org/10.1007/978-981-13-1316-5_54
C.R. Wuest, R.M. Bionta, G. Blewitt et al., The IMB photomultiplier test facility. Nucl. Instrum. Meth. A 239, 467–486 (1985). https://doi.org/10.1016/0168-9002(85)90025-7
D. van Eijk, J. Schneider, M. Unland et al., [IceCube], Characterisation of two PMT models for the IceCube upgrade mDOM. PoS ICRC2019, 1022 (2020). https://doi.org/10.22323/1.358.1022
S.J. Brice, L. Bugel, J.M. Conrad et al., [MiniBooNE], Photomultiplier tubes in the MiniBooNE experiment. Nucl. Instrum. Meth. A 562, 97–109 (2006). https://doi.org/10.1016/j.nima.2006.02.180
B.T. Fleming, L. Bugel, E. Hawker et al., Photomultiplier tube testing for the MiniBooNE experiment. IEEE Trans. Nucl. Sci. 49, 984–988 (2002). https://doi.org/10.1109/TNS.2002.1039601
D. Liu, PMT evaluation for the Daya Bay neutrino experiment. in 2008 IEEE Nuclear Science Symposium Conference Record, 3133–3139 (2008). https://doi.org/10.1109/NSSMIC.2008.4775017
A. Baldini, C. Bemporad, E. Caffau et al., The photomultiplier test facility for the reactor neutrino oscillation experiment CHOOZ and the measurements of 250 8-in. EMI 9356KA B53 photomultipliers. Nucl. Instrum. Meth. A 372, 207–221 (1996). https://doi.org/10.1016/0168-9002(95)01236-2
X. Wang, Z.Q. Zhang, Y. Tian et al., Setup of a photomultiplier tube test bench for LHAASO-KM2A. Chin. Phys. C 40(8), 086003 (2016). https://doi.org/10.1088/1674-1137/40/8/086003
C.M. Mollo, [KM3NeT], Development and performances of a high statistics PMT test facility. EPJ Web Conf. 116, 06010 (2016). https://doi.org/10.1051/epjconf/201611606010
H. Lu, [JUNO], The JUNO veto detector system. Springer Proc. Phys. 213, 197–201 (2018). https://doi.org/10.1007/978-981-13-1316-5_37
H. Lu, E. Baussan et al., [JUNO], The design of the JUNO veto system. J. Phys. Conf. Ser. 888, 012088 (2017). https://doi.org/10.1088/1742-6596/888/1/012088
R. Wang, C. Yang, H. Lu et al., [Juno], Water Cherenkov detector of the JUNO veto system. PoS EPS-HEP2019 1, 1 (2020)
Amaze UI webpage. http://amazeui.github.io/docs/en/. Accessed 20 May (2021)
Scientific Linux webpage. http://www.scientificlinux.org. Accessed 20 May (2021)
Apache webpage. https://www.apache.org. Accessed 20 May (2021)
MySQL webpage. https://www.mysql.com. Accessed 20 May (2021)
PHP webpage. https://www.php.net. Accessed 20 May (2021)
Matplotlib webpage. https://matplotlib.org. Accessed 20 May (2021)
CERN-ROOT webpage. https://root.cern.ch. Accessed 20 May (2021)
R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Meth. A 389, 81–86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X
Apache ECharts webpage. https://echarts.apache.org/en/index.html. Accessed 20 May (2021)
D. Li, H. Mei, Y. Shen et al., ECharts: a declarative framework for rapid construction of web-based visualization. Vis. Inform. 2, 136–146 (2018). https://doi.org/10.1016/j.visinf.2018.04.011
Highcharts webpage. https://www.highcharts.com. Accessed 20 May (2021)
JSROOT webpage. https://root.cern.ch/js/. Accessed 20 May (2021)
DataTables webpage. https://datatables.net. Accessed 20 May (2021)