Database system for managing 20,000 20-inch PMTs at JUNO

Nuclear Science and Techniques - Tập 33 Số 3 - 2022
Jun Wang1, Н. Анфимов2, Jingyuan Guo1, Yu Gu3, H. Hu1, Min Li4,5, Q. M. Ma4, A. Olshevskiy2, Zhaoyuan Peng4,5, Z. H. Qin4,6, Alexander Tietzsch7, B. Wonsak8, Wei Wang1,9, Zhimin Wang4, M. Xu4,6,5, Wan Xie4, Z. Y. You1, Hai-Qiong Zhang4,5, Rong Zhao1
1School of Physics, Sun Yat-Sen University, Guangzhou, China
2Joint Institute for Nuclear research, Dubna, Russia
3College of Science and Engineering, Ji Nan University, Guangzhou, China
4Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
5University of Chinese Academy of Sciences, Beijing, China
6State Key Laboratory of Particle Detection and Electronics, Beijing, China
7Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
8Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
9Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

F. Liu, F. Yi, J. Jia et al., High resolution full-spectrum water Raman lidar. Sci. China Technol. Sci. 55, 1224–1229 (2012). https://doi.org/10.1007/s11431-012-4778-9

Y. Zhou, Z. Sun, Y. Yu et al., A versatile test bench for photomultiplier tube characterization and its application in the DAMPE-PSD. Nucl. Sci. Tech. 27, 70 (2016). https://doi.org/10.1007/s41365-016-0072-z

E.L. Chen, L. Zhao, L. Yu et al., Test system of the front-end readout for an application-specific integrated circuit for the water Cherenkov detector array at the large high-altitude air shower observatory. Nucl. Sci. Tech. 28, 81 (2017). https://doi.org/10.1007/s41365-017-0238-3

J.N. Dong, Y.L. Zhang, Z.Y. Zhang et al., Position-sensitive plastic scintillator detector with WLS-fiber readout. Nucl. Sci. Tech. 29, 117 (2018). https://doi.org/10.1007/s41365-018-0449-2

G. Ambrosi, S. Bartocci, L. Basara et al., The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts. Sci. China Technol. Sci. 61, 643–652 (2018). https://doi.org/10.1007/s11431-018-9234-9

R. Zhang, D.W. Cao, C.W. Loh et al., Using monochromatic light to measure attenuation length of liquid scintillator solvent LAB. Nucl. Sci. Tech. 30, 30 (2019). https://doi.org/10.1007/s41365-019-0542-1

J.H. Liu, Z. Ge, Q. Wang et al., Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF. Nucl. Sci. Tech. 30, 152 (2019). https://doi.org/10.1007/s41365-019-0676-1

P. Juyal, K.L. Giboni, X.D. Ji et al., On proportional scintillation in very large liquid xenon detectors. Nucl. Sci. Tech. 31, 93 (2020). https://doi.org/10.1007/s41365-020-00797-4

X.L. Qian, H.Y. Sun, C. Liu et al., Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment. Nucl. Sci. Tech. 32, 51 (2021). https://doi.org/10.1007/s41365-021-00882-2

L.J. Wen, M. He, Y.F. Wang et al., A quantitative approach to select PMTs for large detectors. Nucl. Instrum. Meth. A 947, 162766 (2019). https://doi.org/10.1016/j.nima.2019.162766

Z. Djurcic et al., [JUNO], JUNO Conceptual Design Report. arXiv:1508.07166 [physics.ins-det]

F. An, G.P. An, Q. An et al., [JUNO], Neutrino physics with JUNO. J. Phys. G (2016). https://doi.org/10.1088/0954-3899/43/3/030401

A. Abusleme et al., [JUNO], JUNO physics and detector. arXiv:2104.02565 [hep-ex]

Z. You, K. Li, Y. Zhang et al., A ROOT based event display software for JUNO. JINST 13, T02002 (2018). https://doi.org/10.1088/1748-0221/13/02/T02002

K. Li, Z. You, Y. Zhang et al., GDML based geometry management system for offline software in JUNO. Nucl. Instrum. Meth. A 908, 43–48 (2018). https://doi.org/10.1016/j.nima.2018.08.008

J. Zhu, Z. You, Y. Zhang et al., A method of detector and event visualization with Unity in JUNO. JINST 14, T01007 (2019). https://doi.org/10.1088/1748-0221/14/01/T01007

Z. Li, Y. Zhang, G. Cao et al., Event vertex and time reconstruction in large-volume liquid scintillator detectors. Nucl. Sci. Tech. 32, 49 (2021). https://doi.org/10.1007/s41365-021-00885-z

Y. Wang, L. Zong, Y. Heng et al., Application of an acrylic vessel supported by a stainless-steel truss for the JUNO central detector. Sci. China Technol. Sci. 57, 2523–2529 (2014). https://doi.org/10.1007/s11431-014-5715-x

G.L. Zhu, J.L. Liu, Q. Wang et al., Ultrasonic positioning system for the calibration of central detector. Nucl. Sci. Tech. 30, 5 (2019). https://doi.org/10.1007/s41365-018-0530-x

C. Cao, J. Xu, M. He et al., Mass production and characterization of 3-inch PMTs for the JUNO experiment. Nucl. Instrum. Meth. A 1005, 165347 (2021). https://doi.org/10.1016/j.nima.2021.165347

A. Yang, Z. Qin, Z. Wang et al., Study and removal of the flash from the HV divider of the 20-inch PMT for JUNO. JINST 15, T04006 (2020). https://doi.org/10.1088/1748-0221/15/04/T04006

B. Wonsak, A. Tietzsch, T. Sterr et al., A container-based facility for testing 20’000 20-inch PMTs for JUNO. JINST 16, T08001 (2021). https://doi.org/10.1088/1748-0221/16/08/T08001

A. F. Tietzsch, Development, installation and operation of a container-based mass testing system for 20-inch photomultiplier tubes for JUNO. Dissertation, Eberhard Karls Universität Tübingen, 2020. https://doi.org/10.15496/publikation-49875

Z. Qian, V. Belavin, V. Bokov et al., Vertex and energy reconstruction in JUNO with machine learning methods. Nucl. Instrum. Meth. A 1010, 165527 (2021). https://doi.org/10.1016/j.nima.2021.165527

X.C. Lei, Y.K. Heng, S. Qian et al., Evaluation of new large area PMT with high quantum efficiency. Chin. Phys. C 40, 026002 (2016). https://doi.org/10.1088/1674-1137/40/2/026002

D.H. Liao, H.B. Liu, Y.X. Zhou et al., Study of TTS for a 20-inch dynode PMT. Chin. Phys. C 41, 076001 (2017). https://doi.org/10.1088/1674-1137/41/7/076001

H.Q. Zhang, Z.M. Wang, F.J. Luo et al., Gain and charge response of 20’’ MCP and dynode PMTs. JINST 16, T08009 (2021). https://doi.org/10.1088/1748-0221/16/08/T08009

W.W. Wang, S. Qian, M. Qi et al., Aging behavior of large area MCP–PMT. Nucl. Sci. Tech. 27, 38 (2016). https://doi.org/10.1007/s41365-016-0046-1

Y. Wang, S. Qian, T. Zhao et al., A new design of large area MCP-PMT for the next generation neutrino experiment. Nucl. Instrum. Meth. A 695, 113–117 (2012). https://doi.org/10.1016/j.nima.2011.12.085

L. Ren, J. Sun, S. Si et al., Study on the improvement of the 20-inch microchannel plate photomultiplier tubes for neutrino detector. Nucl. Instrum. Meth. A 977, 164333 (2020). https://doi.org/10.1016/j.nima.2020.164333

Y. Zhu, Y. Cao, F. Gao et al., The mass production and batch test result of 20’’ MCP-PMTs. Nucl. Instrum. Meth. A 952, 162002 (2020). https://doi.org/10.1016/j.nima.2019.03.057

Q. Wu, S. Qian, Y.Q. Cao et al., The mass production and batch test result of the 15K 20-inch MCP-PMT in NNVT for JUNO. PoS ICHEP2020, 771 (2021). https://doi.org/10.22323/1.390.0771

N. Anfimov, [JUNO], Large photocathode 20-inch PMT testing methods for the JUNO experiment. JINST 12, C06017 (2017). https://doi.org/10.1088/1748-0221/12/06/C06017

Z. Qin, Status of the 20-in. PMT instrumentation for the JUNO experiment. Springer Proc. Phys. 213, 285–293 (2018). https://doi.org/10.1007/978-981-13-1316-5_54

C.R. Wuest, R.M. Bionta, G. Blewitt et al., The IMB photomultiplier test facility. Nucl. Instrum. Meth. A 239, 467–486 (1985). https://doi.org/10.1016/0168-9002(85)90025-7

D. van Eijk, J. Schneider, M. Unland et al., [IceCube], Characterisation of two PMT models for the IceCube upgrade mDOM. PoS ICRC2019, 1022 (2020). https://doi.org/10.22323/1.358.1022

S.J. Brice, L. Bugel, J.M. Conrad et al., [MiniBooNE], Photomultiplier tubes in the MiniBooNE experiment. Nucl. Instrum. Meth. A 562, 97–109 (2006). https://doi.org/10.1016/j.nima.2006.02.180

B.T. Fleming, L. Bugel, E. Hawker et al., Photomultiplier tube testing for the MiniBooNE experiment. IEEE Trans. Nucl. Sci. 49, 984–988 (2002). https://doi.org/10.1109/TNS.2002.1039601

D. Liu, PMT evaluation for the Daya Bay neutrino experiment. in 2008 IEEE Nuclear Science Symposium Conference Record, 3133–3139 (2008). https://doi.org/10.1109/NSSMIC.2008.4775017

A. Baldini, C. Bemporad, E. Caffau et al., The photomultiplier test facility for the reactor neutrino oscillation experiment CHOOZ and the measurements of 250 8-in. EMI 9356KA B53 photomultipliers. Nucl. Instrum. Meth. A 372, 207–221 (1996). https://doi.org/10.1016/0168-9002(95)01236-2

X. Wang, Z.Q. Zhang, Y. Tian et al., Setup of a photomultiplier tube test bench for LHAASO-KM2A. Chin. Phys. C 40(8), 086003 (2016). https://doi.org/10.1088/1674-1137/40/8/086003

C.M. Mollo, [KM3NeT], Development and performances of a high statistics PMT test facility. EPJ Web Conf. 116, 06010 (2016). https://doi.org/10.1051/epjconf/201611606010

H. Lu, [JUNO], The JUNO veto detector system. Springer Proc. Phys. 213, 197–201 (2018). https://doi.org/10.1007/978-981-13-1316-5_37

H. Lu, E. Baussan et al., [JUNO], The design of the JUNO veto system. J. Phys. Conf. Ser. 888, 012088 (2017). https://doi.org/10.1088/1742-6596/888/1/012088

R. Wang, C. Yang, H. Lu et al., [Juno], Water Cherenkov detector of the JUNO veto system. PoS EPS-HEP2019 1, 1 (2020)

Amaze UI webpage. http://amazeui.github.io/docs/en/. Accessed 20 May (2021)

Scientific Linux webpage. http://www.scientificlinux.org. Accessed 20 May (2021)

Apache webpage. https://www.apache.org. Accessed 20 May (2021)

MySQL webpage. https://www.mysql.com. Accessed 20 May (2021)

PHP webpage. https://www.php.net. Accessed 20 May (2021)

Matplotlib webpage. https://matplotlib.org. Accessed 20 May (2021)

CERN-ROOT webpage. https://root.cern.ch. Accessed 20 May (2021)

R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Meth. A 389, 81–86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X

Apache ECharts webpage. https://echarts.apache.org/en/index.html. Accessed 20 May (2021)

D. Li, H. Mei, Y. Shen et al., ECharts: a declarative framework for rapid construction of web-based visualization. Vis. Inform. 2, 136–146 (2018). https://doi.org/10.1016/j.visinf.2018.04.011

Highcharts webpage. https://www.highcharts.com. Accessed 20 May (2021)

JSROOT webpage. https://root.cern.ch/js/. Accessed 20 May (2021)

DataTables webpage. https://datatables.net. Accessed 20 May (2021)