Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dữ liệu cứu sống: Tối ưu hóa dữ liệu lâm sàng thu thập định kỳ cho nghiên cứu bệnh hiếm
Tóm tắt
Sự cần thiết phải thay đổi tổ chức trong bối cảnh hậu đại dịch đã thúc đẩy các nhà cung cấp dịch vụ chăm sóc sức khỏe áp dụng các đổi mới để quản lý và xử lý dữ liệu sức khỏe. Điều này bao gồm việc sử dụng các bộ dữ liệu 'thế giới thực' từ thông tin lâm sàng được thu thập thường xuyên, cho phép việc cung cấp dịch vụ dựa trên dữ liệu. Các bệnh hiếm có nguy cơ bị 'bỏ lại phía sau' trừ khi các cộng đồng lâm sàng và nghiên cứu của chúng ta tham gia vào những thách thức và cơ hội mà lĩnh vực khoa học dữ liệu sức khỏe đang bùng nổ mang lại. Chúng tôi đề cập đến những thách thức trong việc sử dụng và tái sử dụng có ý nghĩa dữ liệu về bệnh hiếm. Thông qua một loạt các khuyến nghị xung quanh giáo dục lực lượng lao động, sự hài hòa hóa thuật ngữ, và đảm bảo một môi trường dữ liệu sức khỏe bao gồm tất cả, chúng tôi nhấn mạnh vai trò mà những người quản lý bệnh hiếm cần phải đảm nhiệm để giải quyết những vấn đề này.
Từ khóa
#thay đổi tổ chức #dữ liệu sức khỏe #bệnh hiếm #dữ liệu lâm sàng #thông tin y tếTài liệu tham khảo
Wang CJ, Ng CY, Brook RH. Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. JAMA. 2020;323(14):1341–2.
Hollander JE, Carr BG. Virtually perfect? Telemedicine for Covid-19. N Engl J Med. 2020;382(18):1679–81.
Ohannessian R, Duong TA, Odone A. Global telemedicine implementation and integration within health systems to fight the COVID-19 pandemic: a call to action. JMIR Public Health Surveill. 2020;6(2):e18810.
Ford I, Norrie J. Pragmatic trials. N Engl J Med. 2016;375(5):454–63.
Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet. 2020;28:165–73.
Horgan D, Bernini C, Thomas PPM, Morre SA. Cooperating on data: the missing element in bringing real innovation to Europe’s healthcare systems. Public Health Genomics. 2019;22(3–4):77–101.
Matthews L, Chin V, Taliangis M, Samanek A, Baynam G. Childhood rare diseases and the UN convention on the rights of the child. Orphanet J Rare Dis. 2021;16:523.
The Office of the National Coordinator for Health Information Technology. Strategy on Reducing Regulatory and Administrative Burden Relating to the Use of Health IT and EHRs. Final Report. 2020 (https://www.healthit.gov/sites/default/files/page/2020-02/BurdenReport_0.pdf) Accessed 13th Dec 2022.
Blumenthal D, Tavenner M. The, “meaningful use” regulation for electronic health records. N Engl J Med. 2010;363(6):501–4.
Wachter RM. Making IT Work: Harnessing the Power of Health Information Technology to Improve Care in England. 2016. (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/550866/Wachter_Review_Accessible.pdf) Accessed 13th Dec 2022.
Priestman W, Sridharan S, Vigne H, Collins R, Seamer L, Sebire NJ. What to expect from electronic patient record system implementation; lessons learned from published evidence. J Innov Health Inform. 2018;25(2):92–104.
Topol E. The Topol review: Preparing the healthcare workforce to deliver the digital future. 2019. (https://topol.hee.nhs.uk/) Accessed 13th Dec 2022.
Goldacre B, Bardsley M, Benson T, Cheema K, Chinn R, Coughlan E, et al. Bringing NHS data analysis into the 21st century. J R Soc Med. 2020;113(10):383–8.
Ambrosini A, Calabrese D, Avato FM, Catania F, Cavaletti G, Pera MC, et al. The Italian neuromuscular registry: a coordinated platform where patient organizations and clinicians collaborate for data collection and multiple usage. Orphanet J Rare Dis. 2018;13:176. https://doi.org/10.1186/s13023-018-0918-z.
Berger A, Rustemeier AK, Göbel J, Kadioglu D, Britz V, Schubert K, et al. How to design a registry for undiagnosed patients in the framework of rare disease diagnosis: suggestions on software, data set and coding system. Orphanet J Rare Dis. 2021;16:198. https://doi.org/10.1186/s13023-021-01831-3.
Sweet LE, Moulaison HL. Electronic health records data and metadata: challenges for big data in the United States. Big data. 2013;1(4):245–51.
Gardner RL, Cooper E, Haskell J, Harris DA, Poplau S, Kroth PJ, et al. Physician stress and burnout: the impact of health information technology. J Am Med Inform Assoc. 2019;26(2):106–14.
Srivastava R. When the EMR Stole My Pen. N Engl J Med. 2020;383(8):708–9.
Kissler MJ, Kissler K, Burden M. Toward a medical “ecology of attention.” N Engl J Med. 2021;384(4):299–301.
The Office of the National Coordinator for Health Information Technology. National Health IT Priorities for Research. 2020.( https://www.healthit.gov/sites/default/files/page/2020-01/PolicyandDevelopmentAgenda.pdf) Accessed 13th Dec 2022.
Bellgard MI, Snelling T, McGree JM. RD-RAP: beyond rare disease patient registries, devising a comprehensive data and analytic framework. Orphanet J Rare Dis. 2019;14(1):176.
Atalaia A, Thompson R, Corvo A, Carmody L, Piscia D, Matalonga L, et al. A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: building a Treatabolome. Orphanet J Rare Dis. 2020;15(1):206.
Wardle M, Spencer A. Implementation of SNOMED CT in an online clinical database. Future Healthc J. 2017;4(2):126–30.
Springate DA, Kontopantelis E, Ashcroft DM, Olier I, Parisi R, Chamapiwa E, et al. ClinicalCodes: an online clinical codes repository to improve the validity and reproducibility of research using electronic medical records. PLoS ONE. 2014;9(6):e99825.
World Health Organization. Global strategy on digital health 2020–2025. 2020 https://www.who.int/docs/default-source/documents/gs4dhdaa2a9f352b0445bafbc79ca799dce4d.pdf. Accessed 13th Dec 2022.
Organisation for Economic Co-operation and Development Development (OECD). Skills Matter: Additional Results from the Survey of Adult Skills. 2019. (https://www.oecd.org/skills/piaac/).
Mandl KD, Szolovits P, Kohane IS. Public standards and patients’ control: how to keep electronic medical records accessible but private. BMJ. 2001;322(7281):283–7.
Cebul RD, Love TE, Jain AK, Hebert CJ. electronic health records and quality of diabetes care. N Engl J Med. 2011;365(9):825–33.
Lyles C, Schillinger D, Sarkar U. Connecting the dots: health information technology expansion and health disparities. PLoS Med. 2015;12(7):e1001852.
Menon DU, Belcher HME. COVID-19 pandemic health disparities and pediatric health care-the promise of telehealth. JAMA Pediatr. 2020. https://doi.org/10.1001/jamapediatrics.2020.5097.
Kavadichanda C, Shah S, Daber A, Bairwa D, Mathew A, Dunga S, et al. Tele-rheumatology for overcoming socioeconomic barriers to healthcare in resource constrained settings: lessons from COVID-19 pandemic. Rheumatology. 2020. https://doi.org/10.1093/rheumatology/keaa791.
Sittig DF, Singh H. Electronic health records and national patient-safety goals. N Engl J Med. 2012;367(19):1854–60.
Best S, Vidic N, An K, Collins F, White SM. A systematic review of geographical inequities for accessing clinical genomic and genetic services for non-cancer related rare disease. Eur J Hum Genet. 2022;30:645–52.
United Nations News. World must be ready for the next pandemic, UN says on first International Day of Epidemic Preparedness. 2020. (https://www.un.org/en/observances/epidemic-preparedness-day). Accessed 13th Dec 2022.
Ashrafian H, Darzi A. Transforming health policy through machine learning. PLoS Med. 2018;15(11):e1002692.
