Chất lượng dữ liệu trong nghiên cứu hình ảnh tensor khuếch tán ở não bộ trẻ sinh non: một hệ thống tổng quan

Pediatric Radiology - Tập 45 - Trang 1372-1381 - 2015
Kay Pieterman1,2, Annemarie Plaisier1,2, Paul Govaert1,3, Alexander Leemans4, Maarten H. Lequin2, Jeroen Dudink1,2
1Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, Rotterdam, The Netherlands
2Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
3Department of Pediatrics, Koningin Paola Children’s Hospital, Antwerp, Belgium
4Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands

Tóm tắt

Để nghiên cứu sự phát triển thần kinh sớm ở trẻ sinh non, việc đánh giá sự trưởng thành của não và tổn thương ngày càng được thực hiện bằng cách sử dụng hình ảnh tensor khuếch tán, trong đó độ tin cậy của dữ liệu cơ bản là điều tối quan trọng. Mục tiêu của bài báo này là tổng hợp tài liệu để đánh giá phương pháp thu thập và xử lý trong các nghiên cứu hình ảnh tensor khuếch tán ở trẻ sinh non. Chúng tôi đã tìm kiếm các cơ sở dữ liệu Embase, Medline, Web of Science và Cochrane để tìm các bài báo liên quan được công bố trong khoảng thời gian từ 2003 đến 2013. Các từ khóa sau đã được sử dụng trong tìm kiếm của chúng tôi: sinh non, hình ảnh thần kinh, não bộ, và hình ảnh tensor khuếch tán. Chúng tôi đã tìm thấy 74 nghiên cứu hình ảnh tensor khuếch tán ở trẻ sinh non đáp ứng tiêu chí của chúng tôi. Đã có sự khác biệt lớn trong phương pháp thu thập và xử lý, và chúng tôi nhận thấy có báo cáo không đầy đủ về các cài đặt này. Mười chín nghiên cứu (26%) báo cáo sử dụng phần cứng cho trẻ sơ sinh. Đánh giá chất lượng dữ liệu không được báo cáo trong 13 (18%) nghiên cứu. Việc sửa lỗi artefacts và loại bỏ dữ liệu không được báo cáo trong 33 (45%) và 18 (24%) nghiên cứu, tương ứng. Các thuật toán ước lượng tensor được báo cáo trong 56 (76%) nghiên cứu nhưng thường là không tối ưu. Các cài đặt thu thập và xử lý hình ảnh tensor khuếch tán được mô tả không đầy đủ trong tài liệu hiện tại, thay đổi đáng kể và thường không đáp ứng được tiêu chuẩn cao nhất.

Từ khóa

#hình ảnh tensor khuếch tán #sinh non #sự trưởng thành của não #đánh giá chất lượng dữ liệu

Tài liệu tham khảo

Gulland A (2012) Fifteen million and rising — the number of premature births every year. BMJ 344:e3084 Bhutta AT, Cleves MA, Casey PH et al (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288:728–737 Marlow N, Hennessy EM, Bracewell MA et al (2007) Motor and executive function at 6 years of age after extremely preterm birth. Pediatrics 120:793–804 Rutherford MA, Supramaniam V, Ederies A et al (2010) Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52:505–521 Dyet LE, Kennea N, Counsell SJ et al (2006) Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 118:536–548 Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124 Counsell SJ, Allsop JM, Harrison MC et al (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7 Dubois J, Dehaene-Lambertz G, Kulikova S et al (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71 Jones DK (2011) Diffusion MRI — theory, methods and applications. Oxford University Press USA, New York Johansen-Berg H, Behrens TEJ (2014) Diffusion MRI — from quantitative measurement to in vivo neuroanatomy. Elsevier, London Bassi L, Chew A, Merchant N (2011) Diffusion tensor imaging in preterm infants with punctate white matter lesions. Pediatr Res 69:561–566 Ment LR, Hirtz D, Huppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055 Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556 Ball G, Boardman JP, Aljabar P et al (2013) The influence of preterm birth on the developing thalamocortical connectome. Cortex 49:1711–1721 Bassi L, Ricci D, Volzone A et al (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131:573–582 de Bruine FT, van Wezel-Meijler G, Leijser LM et al (2011) Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants. Eur Radiol 21:538–547 van Kooij BJ, de Vries LS, Ball G et al (2012) Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR Am J Neuroradiol 33:188–194 Dudink J, Kerr JL, Paterson K et al (2008) Connecting the developing preterm brain. Early Hum Dev 84:777–782 Pandit AS, Robinson E, Aljabar P et al (2014) Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth. Cereb Cortex 24:2324–2333 Collin G, van den Heuvel MP (2013) The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span. Neuroscientist 19:616–628 Tymofiyeva O, Hess CP, Ziv E et al (2013) A DTI-based template-free cortical connectome study of brain maturation. PLoS One 8:e63310 Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820 Vos SB, Jones DK, Viergever MA et al (2011) Partial volume effect as a hidden covariate in DTI analyses. Neuroimage 55:1566–1576 Szczepankiewicz F, Latt J, Wirestam R et al (2013) Variability in diffusion kurtosis imaging: impact on study design, statistical power and interpretation. Neuroimage 76:145–154 Mathur AM, Neil JJ, McKinstry RC et al (2008) Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol 38:260–264 Kozak LR, David S, Rudas G et al (2013) Investigating the need of triggering the acquisition for infant diffusion MRI: a quantitative study including bootstrap statistics. Neuroimage 69:198–205 Plaisier A, Pieterman K, Lequin MH et al (2014) Choice of diffusion tensor estimation approach affects fiber tractography of the fornix in preterm brain. AJNR Am J Neuroradiol 35:1219–122528 Adams E, Chau V, Poskitt KJ et al (2010) Tractography-based quantitation of corticospinal tract development in premature newborns. J Pediatr 156:882–888 Aeby A, van Bogaert P, David P et al (2012) Nonlinear microstructural changes in the right superior temporal sulcus and lateral occipitotemporal gyrus between 35 and 43 weeks in the preterm brain. Neuroimage 63:104–110 Aeby A, de Tiege X, Creuzil M et al (2013) Language development at 2 years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: a diffusion tensor imaging study. Neuroimage 78:145–151 Als H, Duffy FH, McAnulty GB et al (2004) Early experience alters brain function and structure. Pediatrics 113:846–857 Anjari M, Srinivasan L, Allsop JM et al (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 35:1021–1027 Anjari M, Counsell SJ, Srinivasan L et al (2009) The association of lung disease with cerebral white matter abnormalities in preterm infants. Pediatrics 124:268–276 Arichi T, Moraux A, Melendez A et al (2010) Somatosensory cortical activation identified by functional MRI in preterm and term infants. Neuroimage 49:2063–2071 Arzoumanian Y, Mirmiran M, Barnes PD et al (2003) Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol 24:1646–1653 Ball G, Boardman JP, Arichi T et al (2013) Testing the sensitivity of tract-based spatial statistics to simulated treatment effects in preterm neonates. PLoS One 8:e67706 Ball G, Counsell SJ, Anjari M et al (2010) An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. Neuroimage 53:94–102 Ball G, Boardman JP, Rueckert D et al (2012) The effect of preterm birth on thalamic and cortical development. Cereb Cortex 22:1016–1024 Berman JI, Mukherjee P, Partridge SC et al (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27:862–871 Berman JI, Glass HC, Miller SP et al (2009) Quantitative fiber tracking analysis of the optic radiation correlated with visual performance in premature newborns. AJNR Am J Neuroradiol 30:120–124 Bonifacio SL, Glass HC, Chau V et al (2010) Extreme premature birth is not associated with impaired development of brain microstructure. J Pediatr 157:726–732 Brummelte S, Grunau RE, Chau V et al (2012) Procedural pain and brain development in premature newborns. Ann Neurol 71:385–396 Chau V, Poskitt KJ, McFadden DE et al (2009) Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 66:155–164 Chau V, Brant R, Poskitt KJ et al (2012) Postnatal infection is associated with widespread abnormalities of brain development in premature newborns. Pediatr Res 71:274–279 Cheong JLY, Thompson DK, Wang HX et al (2009) Abnormal white matter signal on MR imaging is related to abnormal tissue microstructure. AJNR Am J Neuroradiol 30:623–628 Counsell SJ, Shen Y, Boardman JP et al (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386 de Bruine FT, van Wezel-Meijler G, Leijser LM et al (2013) Tractography of white-matter tracts in very preterm infants: a 2-year follow-up study. Dev Med Child Neurol 55:427–433 DeIpolyi AR, Mukherjee P, Gill K et al (2005) Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. Neuroimage 27:579–586 Drobyshevsky A, Bregman J, Storey P et al (2007) Serial diffusion tensor imaging detects white matter changes that correlate with motor outcome in premature infants. Dev Neurosci 29:289–301 Dudink J, Lequin M, van Pul C et al (2007) Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatr Radiol 37:1216–1223 Dudink J, Larkman DJ, Kapellou O et al (2008) High b-value diffusion tensor imaging of the neonatal brain at 3T. AJNR Am J Neuroradiol 29:1966–1972 Dudink J, Buijs J, Govaert P et al (2010) Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. Pediatr Radiol 40:1397–1404 Gimenez M, Miranda MJ, Born AP et al (2008) Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging. Neuroimage 41:728–734 Glass HC, Berman JI, Norcia AM et al (2010) Quantitative fiber tracking of the optic radiation is correlated with visual-evoked potential amplitude in preterm infants. AJNR Am J Neuroradiol 31:1424–1429 Groppo M, Ricci D, Bassi L et al (2014) Development of the optic radiations and visual function after premature birth. Cortex 56:30–37 Hasegawa T, Yamada K, Morimoto M et al (2011) Development of corpus callosum in preterm infants is affected by the prematurity: in vivo assessment of diffusion tensor imaging at term-equivalent age. Pediatr Res 69:249–254 Hemels MA, Nijman J, Leemans A et al (2012) Cerebral white matter and neurodevelopment of preterm infants after coagulase-negative staphylococcal sepsis. Pediatr Crit Care Med 13:678–684 Jo HM, Cho HK, Jang SH et al (2012) A comparison of microstructural maturational changes of the corpus callosum in preterm and full-term children: a diffusion tensor imaging study. Neuroradiology 54:997–1005 Lee AY, Jang SH, Lee E et al (2013) Radiologic differences in white matter maturation between preterm and full-term infants: TBSS study. Pediatr Radiol 43:612–619 Lee EC, Kwatra NS, Vezina G et al (2013) White matter integrity on fractional anisotropy maps in encephalopathic neonates post hypothermia therapy with normal-appearing MR imaging. Pediatr Radiol 43:709–715 Lepomaki V, Paavilainen T, Matomaki J et al (2012) Effect of antenatal growth and prematurity on brain white matter: diffusion tensor study. Pediatr Radiol 42:692–698 Lepomaki V, Leppanen M, Matomaki J et al (2013) Preterm infants’ early growth and brain white matter maturation at term age. Pediatr Radiol 43:1357–1364 Lepomaki VK, Paavilainen TP, Hurme SAM et al (2012) Fractional anisotropy and mean diffusivity parameters of the brain white matter tracts in preterm infants: reproducibility of region-of-interest measurements. Pediatr Radiol 42:175–182 Lepomaki V, Matomaki J, Lapinleimu H et al (2013) Effect of antenatal growth on brain white matter maturation in preterm infants at term using tract-based spatial statistics. Pediatr Radiol 43:80–85 Ling X, Tang W, Liu G et al (2013) Assessment of brain maturation in the preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN). Eur J Radiol 82:e476–483 Liu Y, Baleriaux D, Kavec M et al (2010) Structural asymmetries in motor and language networks in a population of healthy preterm neonates at term equivalent age: a diffusion tensor imaging and probabilistic tractography study. Neuroimage 51:783–788 Liu Y, Metens T, Absil J et al (2011) Gender differences in language and motor-related fibers in a population of healthy preterm neonates at term-equivalent age: a diffusion tensor and probabilistic tractography study. AJNR Am J Neuroradiol 32:2011–2016 Liu Y, Aeby A, Baleriaux D et al (2012) White matter abnormalities are related to microstructural changes in preterm neonates at term-equivalent age: a diffusion tensor imaging and probabilistic tractography study. AJNR Am J Neuroradiol 33:839–845 Maas LC, Mukherjee P, Carballido-Gamio J et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22:1134–1140 Mathew P, Pannek K, Snow P et al (2013) Maturation of corpus callosum anterior midbody is associated with neonatal motor function in eight preterm-born infants. Neural Plast 2013:359532 Melbourne A, Kendall GS, Cardoso MJ et al (2012) Radial structure in the preterm cortex: persistence of the preterm phenotype at term equivalent age? Med Image Comput Comput Assist Interv 15:256–263 Milgrom J, Newnham C, Anderson PJ et al (2010) Early sensitivity training for parents of preterm infants: impact on the developing brain. Pediatr Res 67:330–335 Nijman J, Gunkel J, de Vries LS et al (2013) Reduced occipital fractional anisotropy on cerebral diffusion tensor imaging in preterm infants with postnatally acquired cytomegalovirus infection. Neonatology 104:143–150 Nossin-Manor R, Card D, Morris D et al (2013) Quantitative MRI in the very preterm brain: assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T1 imaging. Neuroimage 64:505–516 Paquette LB, Wisnowski JL, Ceschin R et al (2013) Abnormal cerebral microstructure in premature neonates with congenital heart disease. AJNR Am J Neuroradiol 34:2026–2033 Partridge SC, Mukherjee P, Henry RG et al (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22:1302–1314 Partridge SC, Mukherjee P, Berman JI et al (2005) Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. J Magn Reson Imaging 22:467–474 Pogribna U, Yu X, Burson K et al (2013) Perinatal clinical antecedents of white matter microstructural abnormalities on diffusion tensor imaging in extremely preterm infants. PLoS One 8:e72974 Pogribna U, Burson K, Lasky RE et al (2014) Role of diffusion tensor imaging as an independent predictor of cognitive and language development in extremely low-birth-weight infants. AJNR Am J Neuroradiol 35:790–796 Ratnarajah N, Rifkin-Graboi A, Fortier MV et al (2013) Structural connectivity asymmetry in the neonatal brain. Neuroimage 75:187–194 Reiman M, Parkkola R, Johansson R et al (2009) Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants. Pediatr Radiol 39:804–809 Rogers CE, Anderson PJ, Thompson DK et al (2012) Regional cerebral development at term relates to school-age social-emotional development in very preterm children. J Am Acad Child Adolesc Psychiatry 51:181–191 Rose SE, Hatzigeorgiou X, Strudwick MW et al (2008) Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age. Magn Reson Med 60:761–767 Rose J, Butler EE, Lamont LE et al (2009) Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Dev Med Child Neurol 51:526–535 Shim SY, Jeong HJ, Son DW et al (2012) Altered microstructure of white matter except the corpus callosum is independent of prematurity. Neonatology 102:309–315 Skiold B, Horsch S, Hallberg B et al (2010) White matter changes in extremely preterm infants, a population-based diffusion tensor imaging study. Acta Paediatr Int J Paediatr 99:842–849 Tam EWY, Ferriero DM, Xu D et al (2009) Cerebellar development in the preterm neonate: effect of supratentorial brain injury. Pediatr Res 66:102–106 Thompson DK, Inder TE, Faggian N et al (2011) Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. Neuroimage 55:479–490 Thompson DK, Inder TE, Faggian N et al (2012) Corpus callosum alterations in very preterm infants: perinatal correlates and 2 year neurodevelopmental outcomes. Neuroimage 59:3571–3581 van Kooij BJ, van Pul C, Benders MJ et al (2011) Fiber tracking at term displays gender differences regarding cognitive and motor outcome at 2 years of age in preterm infants. Pediatr Res 70:626–632 van Pul C, van Kooij BJ, de Vries LS et al (2012) Quantitative fiber tracking in the corpus callosum and internal capsule reveals microstructural abnormalities in preterm infants at term-equivalent age. AJNR Am J Neuroradiol 33:678–684 Vinall J, Grunau RE, Brant R et al. (2013) Slower postnatal growth is associated with delayed cerebral cortical maturation in preterm newborns. Sci Transl Med 5:168ra168 Yoo SS, Park HJ, Soul JS et al (2005) In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging. Invest Radiol 40:110–115 Zwicker JG, Grunau RE, Adams E et al (2013) Score for neonatal acute physiology-II and neonatal pain predict corticospinal tract development in premature newborns. Pediatr Neurol 48:123–129 Keil B, Alagappan V, Mareyam A et al (2011) Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magn Reson Med 66:1777–1787 Pannek K, Guzzetta A, Colditz PB et al (2012) Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques. Pediatr Radiol 42:1169–1182 Jones DK, Leemans A (2011) Diffusion tensor imaging. Methods Mol Biol 711:127–144 Veraart J, Rajan J, Peeters RR et al (2013) Comprehensive framework for accurate diffusion MRI parameter estimation. Magn Reson Med 70:972–984 Chang LC, Jones DK, Pierpaoli C (2005) RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 53:1088–1095 Plaisier A, Govaert P, Lequin MH et al (2014) Optimal timing of cerebral MRI in preterm infants to predict long-term neurodevelopmental outcome: a systematic review. AJNR Am J Neuroradiol 35:841–847 Pannek K, Scheck SM, Colditz PB et al (2014) Magnetic resonance diffusion tractography of the preterm infant brain: a systematic review. Dev Med Child Neurol 56:113–124