Data-driven discovery of partial differential equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
J. Crutchfield, B. McNamara, Equations of motion from a data series. Complex Syst. 1, 417–452 (1987).
C. W. Gear, J. M. Hyman, P. G. Kevrekidis, I. G. Kevrekidis, O. Runborg, C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis. Commun. Math. Sci. 1, 715–762 (2003).
R. González-García, R. Rico-Martínez, I. G. Kevrekidis, Identification of distributed parameter systems: A neural net based approach. Comput. Chem. Eng. 22, S965–S968 (1998).
H. U. Voss, P. Kolodner, M. Abel, J. Kurths, Amplitude equations from spatiotemporal binary-fluid convection data. Phys. Rev. Lett. 83, 3422 (1999).
A. J. Majda, C. Franzke, D. Crommelin, Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. U.S.A. 106, 3649–3653 (2009).
D. Giannakis A. J. Majda, Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci. U.S.A. 109, 2222–2227 (2012).
B. C. Daniels I. Nemenman, Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression. PLOS ONE 10, e0119821 (2015).
R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996).
N. M. Mangan, S. L. Brunton, J. L. Proctor, J. N. Kutz, Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2, 52–63 (2016).
P. Holmes J. L. Lumley G. Berkooz C. W. Rowley Turbulence Coherent Structures Dynamical Systems and Symmetry (Cambridge Univ. Press ed. 2 2012).
T. Zhang Adaptive forward-backward greedy algorithm for sparse learning with linear models in Advances in Neural Information Processing Systems 21 D. Koller D. Schuurmans Y. Bengio L. Bottou Eds. (Curran Associates Inc. 2009) pp. 1921–1928.
I. Knowles, R. J. Renka, Methods for numerical differentiation of noisy data. Electron. J. Differ. Eq. 235–246 (2014).
O. Bruno, D. Hoch, Numerical differentiation of approximated functions with limited order-of-accuracy deterioration. SIAM J. Numer. Anal. 50, 1581–1603 (2012).
Z. Bai, T. Wimalajeewa, Z. Berger, G. Wang, M. Glauser, P. K. Varshney, Low-dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA J. 53, 920–933 (2014).
G. Berkooz, P. Holmes, J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993).
S. L. Brunton B. W. Brunton J. L. Proctor E. Kaiser J. N. Kutz Chaos as an intermittently forced linear system. arXiv:1608.05306 (2016).
S. L. Brunton, J. H. Tu, I. Bright, J. N. Kutz, Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM J. Appl. Dyn. Syst. 13, 1716–1732 (2014).
J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9, 225–236 (1951).
T. Colonius, K. Taira, A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput. Methods Appl. Mech. Eng. 197, 2131–2146 (2008).
M. C. Cross, P. C. Hohenberg, Pattern formation out of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).
C. Gardiner Stochastic Methods (Springer 2009).
M. Gavish, D. L. Donoho, The optimal hard threshold for singular values is 4/3. IEEE Trans. Inf. Theory 60, 5040–5053 (2014).
E. Hopf, The partial differential equation ut + uux = μuxx. Commun. Pure App. Math. 3, 201–230 (1950).
J. N. Kutz Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data (Oxford Univ. Press 2013).
R. J. LeVeque Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems Vol. 98 (SIAM 2007).
A. Mackey, H. Schaeffer, S. Osher, On the compressive spectral method. Multiscale Model. Simul. 12, 1800–1827 (2014).
I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357–378 (2013).
K. P. Murphy Machine Learning: A Probabilistic Perspective (MIT Press 2012).
B. R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, F. Thiele, A hierarchy of low- dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003).
V. Ozoliņš, R. Lai, R. Caflisch, S. Osher, Compressed modes for variational problems in mathematics and physics. Proc. Natl. Acad. Sci. U.S.A. 110, 18368–18373 (2013).
R. Pinnau Model reduction via proper orthogonal decomposition in Model Order Reduction: Theory Research Aspects and Applications (Springer 2008) pp. 95–109.
J. L. Proctor, S. L. Brunton, B. W. Brunton, J. N. Kutz, Exploiting sparsity and equation- free architectures in complex systems. Eur. Phys. J. Spec. Top. 223, 2665–2684 (2014).
H. Schaeffer, R. Caflisch, C. D. Hauck, S. Osher, Sparse dynamics for partial differential equations. Proc. Natl. Acad. Sci. U.S.A. 110, 6634–6639 (2013).
K. Taira, T. Colonius, The immersed boundary method: A projection approach. J. Comput. Phys. 225, 2118–2137 (2007).
G. Tran R. Ward Exact recovery of chaotic systems from highly corrupted data. arXiv:1607.01067 (2016).
W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, C. Grebogi, Predicting catastrophes in non-linear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101 (2011).