Data-driven design of safe control for polynomial systems

European Journal of Control - Trang 100914 - 2023
Alessandro Luppi1, Andrea Bisoffi1, Claudio De Persis2, Pietro Tesi3
1DEIB, Politecnico di Milano, 20133, Milano, Italy
2ENTEG and J.C. Willems Center for Systems and Control, University of Groningen, 9747 AG Groningen, The Netherlands
3DINFO, University of Florence, 50139 Florence, Italy

Tài liệu tham khảo

Ahmadi, A. A. (2008). Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation. Master’s thesis.Mass. Inst. Tech. Ahmadi, 2020, Learning dynamical systems with side information Alan, 2021, Safe controller synthesis with tunable input-to-state safe control barrier functions, IEEE Contr. Sys. Lett. Ames, 2016, Control barrier function based quadratic programs for safety critical systems, IEEE Trans. Autom. Contr., 62, 3861, 10.1109/TAC.2016.2638961 Aubin, 2011 Bisoffi, 2021, Trade-offs in learning controllers from noisy data, Sys. & Contr. Lett., 154, 104985, 10.1016/j.sysconle.2021.104985 Bisoffi, 2022, Data-driven control via Petersens lemma, Automatica, 145, 110537, 10.1016/j.automatica.2022.110537 Bisoffi, 2023, Controller design for robust invariance from noisy data, IEEE Trans. Autom. Contr., 68, 636, 10.1109/TAC.2022.3170373 Blanchini, 1999, Set invariance in control, Automatica, 35, 1747, 10.1016/S0005-1098(99)00113-2 Boyd, 1994 Chen, 2022, Data-driven computation of robust control invariant sets with concurrent model selection, IEEE Trans. Contr. Sys. Techn., 30, 495, 10.1109/TCST.2021.3069759 Chernyshenko, 2014, Polynomial sum of squares in fluid dynamics: a review with a look ahead, Phil. Trans. Royal Soc. A: Mathem., Phys. Eng. Sciences, 372 Chesi, 2010, LMI techniques for optimization over polynomials in control: a survey, IEEE Trans. Autom. Contr., 55, 2500, 10.1109/TAC.2010.2046926 Coulson, 2019, Data-enabled predictive control: In the shallows of the DeePC Dai, 2018, A moments based approach to designing MIMO data driven controllers for switched systems Dai, 2021, A semi-algebraic optimization approach to data-driven control of continuous-time nonlinear systems, IEEE Contr. Sys. Lett., 5, 487, 10.1109/LCSYS.2020.3003505 De Persis, 2022, Event-triggered control from data, arXiv preprint arXiv:2208.11634 De Persis, 2019, Formulas for data-driven control: Stabilization, optimality, and robustness, IEEE Trans. Autom. Contr., 65, 909, 10.1109/TAC.2019.2959924 Garg, 2021, Robust control barrier and control Lyapunov functions with fixed-time convergence guarantees Garnier, 2003, Continuous-time model identification from sampled data: implementation issues and performance evaluation, Int. Jour. Contr., 76, 1337, 10.1080/0020717031000149636 Garone, 2017, Reference and command governors for systems with constraints: A survey on theory and applications, Automatica, 75, 306, 10.1016/j.automatica.2016.08.013 Guo, 2022, Data-driven stabilization of nonlinear polynomial systems with noisy data, IEEE Trans. Autom. Contr., 67, 4210, 10.1109/TAC.2021.3115436 Hjalmarsson, 1993, A discussion of “unknown-but-bounded” disturbances in system identification Jankovic, 2018, Robust control barrier functions for constrained stabilization of nonlinear systems, Automatica, 96, 359, 10.1016/j.automatica.2018.07.004 Jarvis-Wloszek, 2005, Control applications of sum of squares programming, 3 Lakshmi, 2020, Finding extremal periodic orbits with polynomial optimization, with application to a nine-mode model of shear flow, SIAM J. Appl. Dyn. Sys., 19, 763, 10.1137/19M1267647 Löfberg, 2004, YALMIP: A toolbox for modeling and optimization in MATLAB Löfberg, 2009, Pre- and post-processing sum-of-squares programs in practice, IEEE Trans. Autom. Contr., 54, 1007, 10.1109/TAC.2009.2017144 Lopez, 2020, Robust adaptive control barrier functions: An adaptive and data-driven approach to safety, IEEE Contr. Sys. Lett., 5, 1031, 10.1109/LCSYS.2020.3005923 Luppi, A., Bisoffi, A., Persis, C. D., & Tesi, P. (December 2021). Data-driven design of safe control for polynomial systems. ArXiv preprint arXiv:2112.12664. Majumdar, 2013, Control design along trajectories with sums of squares programming Markovsky, 2008, Data-driven simulation and control, Int. Jour. Contr., 81, 1946, 10.1080/00207170801942170 Milanese, 2004, Set membership identification of nonlinear systems, Automatica, 40, 957, 10.1016/j.automatica.2004.02.002 Nagumo, 1942, Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Physico-Mathem. Soc. of Japan, 3rd Ser. Papachristodoulou, 2005, A tutorial on sum of squares techniques for systems analysis Parrilo, 2000 Prajna, 2004, Safety verification of hybrid systems using barrier certificates Shaw Cortez, 2022, Safe-by-design control for Euler-Lagrange systems, Automatica, 146, 110620, 10.1016/j.automatica.2022.110620 Tan, 2008, Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming, IEEE Trans. Autom. Contr., 53, 565, 10.1109/TAC.2007.914221 Wabersich, 2018, Scalable synthesis of safety certificates from data with application to learning-based control Wieland, 2007, Constructive safety using control barrier functions, IFAC Proc. Vol., 10.3182/20070822-3-ZA-2920.00076 Willems, 2005, A note on persistency of excitation, Sys. & Contr. Lett., 54, 325, 10.1016/j.sysconle.2004.09.003 Wolff, 2005, Invariance control design for constrained nonlinear systems Xu, 2017, Correctness guarantees for the composition of lane keeping and adaptive cruise control, IEEE Trans. Autom. Science Eng., 15, 1216, 10.1109/TASE.2017.2760863 Zheng, 2021, Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization, Ann. Rev. Contr., 10.1016/j.arcontrol.2021.09.001