Data-driven design of safe control for polynomial systems
European Journal of Control - Trang 100914 - 2023
Tài liệu tham khảo
Ahmadi, A. A. (2008). Non-monotonic Lyapunov functions for stability of nonlinear and switched systems: theory and computation. Master’s thesis.Mass. Inst. Tech.
Ahmadi, 2020, Learning dynamical systems with side information
Alan, 2021, Safe controller synthesis with tunable input-to-state safe control barrier functions, IEEE Contr. Sys. Lett.
Ames, 2016, Control barrier function based quadratic programs for safety critical systems, IEEE Trans. Autom. Contr., 62, 3861, 10.1109/TAC.2016.2638961
Aubin, 2011
Bisoffi, 2021, Trade-offs in learning controllers from noisy data, Sys. & Contr. Lett., 154, 104985, 10.1016/j.sysconle.2021.104985
Bisoffi, 2022, Data-driven control via Petersens lemma, Automatica, 145, 110537, 10.1016/j.automatica.2022.110537
Bisoffi, 2023, Controller design for robust invariance from noisy data, IEEE Trans. Autom. Contr., 68, 636, 10.1109/TAC.2022.3170373
Blanchini, 1999, Set invariance in control, Automatica, 35, 1747, 10.1016/S0005-1098(99)00113-2
Boyd, 1994
Chen, 2022, Data-driven computation of robust control invariant sets with concurrent model selection, IEEE Trans. Contr. Sys. Techn., 30, 495, 10.1109/TCST.2021.3069759
Chernyshenko, 2014, Polynomial sum of squares in fluid dynamics: a review with a look ahead, Phil. Trans. Royal Soc. A: Mathem., Phys. Eng. Sciences, 372
Chesi, 2010, LMI techniques for optimization over polynomials in control: a survey, IEEE Trans. Autom. Contr., 55, 2500, 10.1109/TAC.2010.2046926
Coulson, 2019, Data-enabled predictive control: In the shallows of the DeePC
Dai, 2018, A moments based approach to designing MIMO data driven controllers for switched systems
Dai, 2021, A semi-algebraic optimization approach to data-driven control of continuous-time nonlinear systems, IEEE Contr. Sys. Lett., 5, 487, 10.1109/LCSYS.2020.3003505
De Persis, 2022, Event-triggered control from data, arXiv preprint arXiv:2208.11634
De Persis, 2019, Formulas for data-driven control: Stabilization, optimality, and robustness, IEEE Trans. Autom. Contr., 65, 909, 10.1109/TAC.2019.2959924
Garg, 2021, Robust control barrier and control Lyapunov functions with fixed-time convergence guarantees
Garnier, 2003, Continuous-time model identification from sampled data: implementation issues and performance evaluation, Int. Jour. Contr., 76, 1337, 10.1080/0020717031000149636
Garone, 2017, Reference and command governors for systems with constraints: A survey on theory and applications, Automatica, 75, 306, 10.1016/j.automatica.2016.08.013
Guo, 2022, Data-driven stabilization of nonlinear polynomial systems with noisy data, IEEE Trans. Autom. Contr., 67, 4210, 10.1109/TAC.2021.3115436
Hjalmarsson, 1993, A discussion of “unknown-but-bounded” disturbances in system identification
Jankovic, 2018, Robust control barrier functions for constrained stabilization of nonlinear systems, Automatica, 96, 359, 10.1016/j.automatica.2018.07.004
Jarvis-Wloszek, 2005, Control applications of sum of squares programming, 3
Lakshmi, 2020, Finding extremal periodic orbits with polynomial optimization, with application to a nine-mode model of shear flow, SIAM J. Appl. Dyn. Sys., 19, 763, 10.1137/19M1267647
Löfberg, 2004, YALMIP: A toolbox for modeling and optimization in MATLAB
Löfberg, 2009, Pre- and post-processing sum-of-squares programs in practice, IEEE Trans. Autom. Contr., 54, 1007, 10.1109/TAC.2009.2017144
Lopez, 2020, Robust adaptive control barrier functions: An adaptive and data-driven approach to safety, IEEE Contr. Sys. Lett., 5, 1031, 10.1109/LCSYS.2020.3005923
Luppi, A., Bisoffi, A., Persis, C. D., & Tesi, P. (December 2021). Data-driven design of safe control for polynomial systems. ArXiv preprint arXiv:2112.12664.
Majumdar, 2013, Control design along trajectories with sums of squares programming
Markovsky, 2008, Data-driven simulation and control, Int. Jour. Contr., 81, 1946, 10.1080/00207170801942170
Milanese, 2004, Set membership identification of nonlinear systems, Automatica, 40, 957, 10.1016/j.automatica.2004.02.002
Nagumo, 1942, Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Physico-Mathem. Soc. of Japan, 3rd Ser.
Papachristodoulou, 2005, A tutorial on sum of squares techniques for systems analysis
Parrilo, 2000
Prajna, 2004, Safety verification of hybrid systems using barrier certificates
Shaw Cortez, 2022, Safe-by-design control for Euler-Lagrange systems, Automatica, 146, 110620, 10.1016/j.automatica.2022.110620
Tan, 2008, Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming, IEEE Trans. Autom. Contr., 53, 565, 10.1109/TAC.2007.914221
Wabersich, 2018, Scalable synthesis of safety certificates from data with application to learning-based control
Wieland, 2007, Constructive safety using control barrier functions, IFAC Proc. Vol., 10.3182/20070822-3-ZA-2920.00076
Willems, 2005, A note on persistency of excitation, Sys. & Contr. Lett., 54, 325, 10.1016/j.sysconle.2004.09.003
Wolff, 2005, Invariance control design for constrained nonlinear systems
Xu, 2017, Correctness guarantees for the composition of lane keeping and adaptive cruise control, IEEE Trans. Autom. Science Eng., 15, 1216, 10.1109/TASE.2017.2760863
Zheng, 2021, Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization, Ann. Rev. Contr., 10.1016/j.arcontrol.2021.09.001