Data-dependent k/sub n/-NN and kernel estimators consistent for arbitrary processes
Tóm tắt
Let X/sub 1/, X/sub 2/,... be an arbitrary random process taking values in a totally bounded subset of a separable metric space. Associated with X/sub i/ we observe Y/sub i/ drawn from an unknown conditional distribution F(y|X/sub i/=x) with continuous regression function m(x)=E[Y|X=x]. The problem of interest is to estimate Y/sub n/ based on X/sub n/ and the data {(X/sub i/, Y/sub i/)}/sub i=1//sup n-1/. We construct appropriate data-dependent nearest neighbor and kernel estimators and show, with a very elementary proof, that these are consistent for every process X/sub 1/, X/sub 2/,.
Từ khóa
#Stochastic processes #Parameter estimation #Set theoryTài liệu tham khảo
10.1080/02331889908802686
10.1214/aos/1018031110
10.1109/18.661503
10.1007/BF02532233
10.1007/978-94-011-3222-0
10.1214/aos/1176343886
10.1016/0047-259X(89)90091-2
10.1016/0304-4149(93)90050-E
10.1016/0047-259X(87)90105-9
dudley, 1989, Real Analysis and Probability
10.1007/BF00531618
györfi gyorfi, 1989, Nonparametric Curve Estimation from Time Series, 10.1007/978-1-4612-3686-3
györfi gyorfi, 1981, the rate of convergence of <formula><tex>$k_n$</tex></formula>-nn regression estimates and classification rules, IEEE Trans Information Theory, it 27, 362, 10.1109/TIT.1981.1056344
10.1109/18.391248
10.1109/TIT.1986.1057226
cover, 1968, rates of convergence for nearest neighbor procedures, Proc 1st Annu Hawaii Conf Systems Theory, 413
beck, 1979, the exponential rate of convergence of error for <formula><tex>$k_n$</tex></formula>-nn nonparametric regression and decision, Prob Contr Inform Theory, 8, 303
10.1109/18.650998