Data compression for subspace-based identification using periodic inputs

Proceedings of the American Control Conference - Tập 4 - Trang 3313-3318 vol.4 - 2002
I.I. Hussein1, S.L. Lacy1, D.S. Bernstein1
1University of Michigan, USA

Tóm tắt

In this paper we develop data compression techniques for subspace methods to extend their ability to work with long data records. Satisfactory results are obtained when a subspace algorithm is used to identify the system based on averaged measurements with periodic input signals. We also discuss pitfalls of using multitonal input signals in combination with the proposed scheme.

Từ khóa

#Data compression #Signal processing #Recursive estimation #Frequency domain analysis #Time domain analysis #Signal generators #Frequency estimation #Random access memory #Parameter estimation #Least squares approximation

Tài liệu tham khảo

10.1016/0005-1098(95)00107-5 10.1016/0005-1098(94)90230-5 10.1016/S0005-1098(96)00104-5 10.1007/978-1-4613-0465-4 10.1016/0005-1098(95)00173-T 10.1109/IMTC.1991.161615 de vries, 1995, Quantification of uncertainty in transfer function estimation, Automatica, 31, 543, 10.1016/0005-1098(95)98483-M van overschee, 1995, A unifying theorem for three subspace system identification algorithms, Automatica, 31, 1853, 10.1016/0005-1098(95)00072-0 10.1080/00207179108934204 orfanidis, 1988, Optimum Signal Processing Second Edition