Data and insights to advance characterization of groundwater resources in the Plaine des Gonaïves, Haiti
Tóm tắt
The Plaine des Gonaïves houses a regionally significant yet data-scarce coastal aquifer in one of the driest regions of Haiti. It is the primary source of water for the region, including Haiti’s third largest city, Gonaïves. Pressure on groundwater resources will be compounded as municipal water services modernize and energy infrastructure enables the resurgence of commercial agriculture. In anticipation of increased stress and greater impacts, this study was undertaken (including data discovery, reconnaissance, and analysis) to gain insights and to advance understanding of the groundwater resources. The alluvial aquifer covers >115 km2, exceeds 100 m thickness, and supports pumping yields as high as 532 m3/h. The heterogeneous multilayer aquifer exhibits hydraulic conductivities that range by an order of magnitude, influencing groundwater flow, residence times, and chemistry. Significant recharge occurs in the central and upgradient portions of the plain; river infiltration appears to be a more significant recharge source than direct infiltration. In the downgradient portion of the plain, confined aquifer pressure increases and discharge areas include the Quinte River, springs, wetlands, ditches and canals. Underlying the alluvium, discontinuous groundwater in bedrock with structural influence may mix with the alluvial aquifer, affecting isotopic composition and water chemistry. Increased abstraction, climate change, and intensification of agriculture and urban development could have consequential impacts on water quantity, water quality and ecosystems. The results, insights, and supporting datasets are a baseline to guide planning and to advance a hydrogeological conceptual model that supports sustainable and informed groundwater management.
Tài liệu tham khảo
Adamson JK, Jean-Baptiste G, Miner WJ (2016) Summary of groundwater resources in Haiti. In: Wessel GR, Greenberg JK (eds) Geoscience for the public good and global development: toward a sustainable future. Geol Soc Am Spec Pap 520, pp 1–22. https://doi.org/10.1130/2016.2520(14)
Adamson JK, Miner WJ, Rochat, P-Y, Moliere E, Piasecki M, Lavanchy GT, Perez-Monforte S, Rodriquez-Vera M (2022) Significance of river infiltration to the Port-Au-Prince metropolitan region: a case study of two alluvial aquifers in Haiti. Hydrogeol J. https://doi.org/10.1007/s10040-022-02488-3
Arnaud L, Gutierrez A, Zegoulli I, Gonomy N (2022) Modelling groundwater flow in the Plaine du Nord–Massacre shallow aquifer, Haiti. Hydrogeol J. https://link.springer.com/article/10.1007/s10040-022-02469-6
Boisson D, Pubellier M (1987) Carte géologique à 1/250 000 de la République d’Haïti [Geologic map of the Republic of Haiti at 1/250,000] BME, IMAGEO, CNRS, Paris
Boronina A, Balderer W, Renard P, Stichler W (2005) Study of stable isotopes in the Kouris catchment for the description of regional groundwater flow. J Hydrol 308:214–226
Bredehoeft J (2005) The conceptualization model problem: surprise. Hydrogeol J 13:37–46
Butterlin J (1960) Géologie générale et régionale de la république d’Haïti [General and regional geology of the Republic of Haiti]. University of Paris, Institute for Advanced Studies in Latin America, Paris
Campbell J, Taylor M, Stephenson T, Watson R, Whyte F (2010) Future climate of the Caribbean from a regional climate model. Int J Climatol 31(12):1866–1878
CIAT (Comité Interministériel d’Aménagement du Territoire) (2013) Haiti: Strategic Program for Climate Change Resilience. Bureau du Premier Ministre, République d’Haiti, Port-au-Prince, 181 pp
Cooper HH, Jacob CE (1946) A generalized graphical method of evaluating formation constants and summarizing well-field history. Am Geophys Union Trans 27:526–534
Dieng NM, Orban P, Otten J, Stumpp C, Faye S, Dassargues A (2017) Temporal changes in groundwater quality of the Saloum coastal aquifer. J Hydrol: Regional Stud 9:163–182
Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Am Geophys Union Trans 27:95–100
Kresic N, Mikszewski A (2013) Hydrogeological conceptual site models: data analysis and visualization. CRC, Boca Raton, FL, 584 pp
FAO [United Nations Food and Agriculture Organization] (1969) Enquete sur les terres et les eaux dans la Plaine des Gonaïves et le Departement du Nord-Ouest, Carte Géologique: Republique d’Haiti [Land and water survey in the Gonaïves Plain and the North-West Department, Geological Map, Republic of Haiti]. Scale 1:100,000, 1 sheet, FAO, Rome
Falkland T (1999) Water resources issues of small island developing states. Nat Res Forum 23:245–260. https://doi.org/10.1111/j.1477-8947.1999.tb00913.x
Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, Englewood Cliffs, NJ
Fick SE, Hijmans RJ (2017) WorldClim2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315
Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ, 604 pp
Gourcy L, Adamson JK, Miner WJ, Vitvar T, Belizaire D (2022) The use of water stable isotopes for a better understanding of hydrogeological processes in Haiti: overview of existing δ18O and δ2H data. Hydrogeol J. https://doi.org/10.1007/s10040-022-02498-1
Gilboa Y (1980) The aquifer systems of the Dominican Republic. Hydrol Sci J 25(4):379–393. https://doi.org/10.1080/02626668009491948
Gonfiantini R, Simonot M (1987) Isotopic investigation of groundwater in the Cul-de-sac plain, Haiti. In: Proceedings of a symposium on isotope techniques in water resources development. Vienna, 30 March–3 April 1987, IAEA SM-299/132, IAEA, Vienna, pp 483–504
Hijmans RJ, Susan C, Parra J (2017) WorldClim Version 1. Creative Commons - Attribution-ShareAlike 4.0 International. http://www.worldclim.org/version1. Accesssed March 15, 2017
Lozano-Gracia N, Lozano MG (eds) (2017) Haitian cities: actions for today with an eye on tomorrow. International Bank for Reconstruction and Development/The World Bank, Washington DC, 236 pp
Mertes LAK (1997) Documentation and significance of the perirheic zone on inundated floodplains. Water Resour Res 33(7):1749–1762. https://doi.org/10.1029/97WR00658
Miner WJ, Adamson JK (2017) Modeling the spatial distribution of groundwater recharge in Haiti using a GIS approach. Geological Society of America, Annual Meeting 2017, Seattle, WA. https://doi.org/10.1130/abs/2017AM-297120
Rantz SE et al (1982a) Measurement of stage and discharge, vol 1. In: Measurement and computation of streamflow. US Geol Surv Water Suppl Pap 2175, pp 1–284
Rantz SE et al (1982b) Computation of discharge, vol 2. In: Measurement and computation of streamflow. US Geol Surv Water Suppl Pap 2175, pp 284-601
Schüring J, Schlieker M, Hencke J (2000) Redox fronts in aquifer systems and parameters controlling their dimensions. In: Schüring J, Schulz HD, Fischer WR, Böttcher J, Duijnisveld WHM (eds) Redox. Springer, Heidelberg. https://doi.org/10.1007/978-3-662-04080-5_11
Smith S, Hersey D (2008) Analysis of watershed vulnerability to flooding in Haiti. World Appl Sci J 4(6):869–885
Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7:15–27
Taylor GC, Lemoine TC (1949) Geology of the Gonaïves plain, Haiti. US Geol Surv Open-File Rep 49-115, 29 pp
Trabucco A, Zomer R (2019) Global aridity index and potential evapotranspiration (ET0) climate database v2. Figshare. Fileset. https://doi.org/10.6084/m9.figshare.7504448.v3
Tippenhauer LG (1893) Die Insel Haiti [The island of Haiti]. Brockhaus, Leipzig, Germany, 693 pp
UNDP [United Nations Development Program] (1990) Carte Hydrogéologique République d’Haiti [Hydrogeologic map of the Republic of Haiti], United Nations Development Program, New York, scale 1:250,000, 1 sheet
Woodring WP, Brown JS, Burbank WS (1924) Geology of the Republic of Haiti. Department of Public Works, Port-au-Prince, Haiti