Data analytics approach for online produced fluid flow rate estimation in SAGD process

Computers and Chemical Engineering - Tập 136 - Trang 106766 - 2020
Shabnam Sedghi1, Ruomu Tan2, Biao Huang1
1Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
2Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK

Tài liệu tham khảo

Andersson, 2009, A comparison of nine PLS1 algorithms, J. Chemom., 23, 518, 10.1002/cem.1248 Butler, 1998, SAGD comes of age!, J. Can. Pet. Technol., 37, 10.2118/98-07-DA De Jong, 1993, SIMPLS: an alternative approach to partial least squares regression, Chemom. Intell. Lab. Syst., 18, 251, 10.1016/0169-7439(93)85002-X Fortuna, 2005, Soft sensors for product quality monitoring in debutanizer distillation columns, Control Eng. Pract., 13, 499, 10.1016/j.conengprac.2004.04.013 Geladi, 1986, Partial least-squares regression: a tutorial, Anal. Chim. Acta, 185, 1, 10.1016/0003-2670(86)80028-9 Gonzaga, 2009, ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process, Comput. Chem. Eng., 33, 43, 10.1016/j.compchemeng.2008.05.019 Huang, 2012, Improved principal component regression for face recognition under illumination variations, IEEE Signal Process. Lett., 19, 179, 10.1109/LSP.2012.2185492 Johnston, 1995, Maximum likelihood data rectification: steady-state systems, AlChE J., 41, 2415, 10.1002/aic.690411108 Kadlec, 2009, Data-driven soft sensors in the process industry, Comput. Chem. Eng., 33, 795, 10.1016/j.compchemeng.2008.12.012 Kadlec, 2011, Review of adaptation mechanisms for data-driven soft sensors, Comput. Chem. Eng., 35, 1, 10.1016/j.compchemeng.2010.07.034 Khatibisepehr, 2013, Design of inferential sensors in the process industry: a review of Bayesian methods, J. Process. Control, 23, 1575, 10.1016/j.jprocont.2013.05.007 Lin, 2007, A systematic approach for soft sensor development, Comput. Chem. Eng., 31, 419, 10.1016/j.compchemeng.2006.05.030 McLennan, 2004, SAGD Reservoir Characterization Using Geostatistics: Application to the Athabasca Oil Sands, Alberta, Canada Nasr, 2005, Thermal techniques for the recovery of heavy oil and bitumen Özyurt, 2004, Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes, Comput. Chem. Eng., 28, 381, 10.1016/j.compchemeng.2003.07.001 Rashedi, 2018, An integrated first principle modeling to steam assisted gravity drainage (SAGD), J. Pet. Sci. Eng., 163, 501, 10.1016/j.petrol.2018.01.005 Sedghi, 2017, Real-time assessment and diagnosis of process operating performance, Engineering, 3, 214, 10.1016/J.ENG.2017.02.004 Sedghi, 2017, Mixture semisupervised probabilistic principal component regression model with missing inputs, Comput. Chem. Eng., 103, 176, 10.1016/j.compchemeng.2017.03.015 Tan, 2015 Tong, 1995, Detection of gross errors in data reconciliation by principal component analysis, AlChE J., 41, 1712, 10.1002/aic.690410711 Xie, 2013, Soft sensors for online steam quality measurements of OTSGs, J. Process. Control, 23, 990, 10.1016/j.jprocont.2013.05.006 Yan, 2004, Soft sensing modeling based on support vector machine and Bayesian model selection, Comput. Chem. Eng., 28, 1489, 10.1016/j.compchemeng.2003.11.004