Data Augmentation and Intelligent Recognition in Pavement Texture Using a Deep Learning

IEEE Transactions on Intelligent Transportation Systems - Tập 23 Số 12 - Trang 25427-25436 - 2022
Ning Chen1, Zijin Xu1, Zhuo Liu1, Yihan Chen2, Yinghao Miao3, Qiuhan Li4, Yue Hou1, Linbing Wang5
1Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing, Chaoyang, China
2School of Transportation, Southeast University, Nanjing, China
3National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, China
4Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing, China
5Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1016/j.ijprt.2016.08.005

gulrajani, 2017, Improved training of Wasserstein GANs, arXiv 1704 00028

10.1023/A:1010933404324

goodfellow, 2014, Generative adversarial networks, Proc Adv Neural Inf Process Syst, 3, 2672

10.1016/j.measurement.2020.108828

10.1016/j.autcon.2019.102843

arjovsky, 2017, Wasserstein GAN, arXiv 1701 07875

10.1109/ICCV.2017.304

radford, 2015, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv 1511 06434

shen, 2018, A random forest algorithm for unbalanced classification, Computer& Modernization, 280, 56

liu, 2011, Research progress on characteristic technique of pavement micro-texture and testing technology of pavement skid resistance at home and abroad, Proc Int Conf Remote Sens Environ Transp Eng, 4368

10.1061/(ASCE)MT.1943-5533.0000912

10.1016/j.autcon.2017.08.017

10.1109/ICCCYB.2009.5393955

10.1080/10298436.2010.546858

10.1016/j.wear.2006.08.045

liu, 2016, Three-dimensional pavement surface texture measurement and statistical analysis

simonyan, 2014, Very deep convolutional networks for large-scale image recognition, arXiv 1409 1556

10.1109/CVPR.2016.308

10.1109/CVPR.2016.90

huang, 2017, Densely connected convolutional networks, Proc IEEE Conf Comput Vis Pattern Recognit, 2261

10.1109/INES49302.2020.9147199

10.1007/s11831-016-9194-z

10.1016/j.compeleceng.2021.107155

10.3397/1.3514588

10.1016/j.ijfatigue.2021.106185

10.1111/mice.12406

10.1016/j.jclepro.2019.119790

wambold, 1994, International PIARC experiment to compare and harmonize texture and skid resistance measurements, Nordic Road Transport Res, 6, 28

10.1016/j.apsusc.2019.02.121

10.3141/2227-19

10.2346/1.2151006

henry, 2000, Evaluation of pavement friction of characteristics

10.1007/978-3-319-57550-6_3

su, 2018, Morphological segmentation based on edge detection-II for automatic concrete crack measurement, Computers and Concrete, 21, 727

hoang, 2018, Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network, Autom Construct, 94, 203, 10.1016/j.autcon.2018.07.008

10.1109/ACCESS.2020.2981561

10.1016/j.compeleceng.2021.106968

10.1016/j.compeleceng.2018.05.009

10.1061/JPEODX.0000245