Khái niệm tế bào gốc của vú

Der Onkologe - Tập 15 - Trang 609-622 - 2009
A. Rody1, T. Karn1, U. Holtrich1, M. Kaufmann1
1Klinik für Gynäkologie und Geburtshilfe, Johann-Wolfgang-Goethe-Universität, Frankfurt, Deutschland

Tóm tắt

Khái niệm tế bào gốc của vú liên quan chặt chẽ đến câu hỏi về sự hình thành, phản ứng điều trị và diễn tiến của ung thư vú. Những tiến bộ trong việc phân loại mô phỏng phân tử các khu vực tế bào riêng lẻ trong các giai đoạn khác nhau của ngực, cũng như sự hiểu biết về các đặc tính sinh học của chúng, đã dẫn đến việc xác định các tế bào gốc/progenitor còn non. Do thiếu các phương pháp xác định đồng nhất cho các loại tế bào này, việc định nghĩa chỉ dựa trên hành vi sinh học của chúng được chấp nhận chung. Bằng cách sử dụng khái niệm tế bào gốc vú, nhiều hình thức lâm sàng của bệnh ung thư vú (ví dụ, ung thư vú di truyền) có thể được giải thích. Tuy nhiên, việc áp dụng điều trị tương ứng vẫn còn ở giai đoạn đầu của thử nghiệm lâm sàng.

Từ khóa

#tế bào gốc #ung thư vú #sinh học tế bào #điều trị ung thư

Tài liệu tham khảo

Cohnheim J (1882) Vorlesung über die allgemeine Pathologie, 1. Bd., Berlin, S 736 Potter VR (1978) Phenotypic diversity in experimental hepatomas: The concept of partially blocked ontogeny. The 10th Walter Hubert Lecture. Br J Cancer 38(1):1–23 Russo IH, Russo J (1998) Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia 3(1):49–61 Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer and cancer stem cells. Nature 414:105–111 Rody A, Karn T, Holtrich U, Kaufmann M (2008) Stem cell like breast cancers-a model for the identification of new prognostic/predictive markers in endocrine responsive breast cancer exemplified by Plexin B1. Eur J Obstet Gynecol Reprod Biol 139(1):11–15 Kaufmann M, Rody A, Brustkrebs (2009) Mortalitätsreduktion durch Früherkennung und adjuvante Therapie. Geburtsh Frauenheilk (im Druck) Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874 Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532 Lakhani SR (1999) The transition from hyperplasia to invasive carcinoma of the breast. J Pathol 187:272–278 Boecker W, Buerger H, Schmitz K et al (2001) Ductal epithelial proliferations of the breast: A biological continuum? Comparative genomic hybridization and high-molecular-weight cytokeratin expression patterns. J Pathol 195(4):415–421 Boecker W, Moll R, Dervan P et al (2002) Usual ductal hyperplasia of the breast is a committed stem (progenitor) cell lesion distinct from atypical ductal hyperplasia and ductal carcinoma in situ. J Pathol 198(4):458–467 Rakha EA, Putti TC, Abd El-Rehim DM et al (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208(4):495–506 Martínez-Climent JA, Andreu EJ, Prosper F (2006) Somatic stem cells and the origin of cancer. Clin Transl Oncol 8:647–663 Graziano A, d’Aquino R, Tirino V et al (2008) The stem cell hypothesis in head and neck cancer. J Cell Biochem 103:408–412 Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270 Molyneux G, Regan J, Smalley MJ (2007) Mammary stem cells and breast cancer. Cell Mol Life Sci 64(24):3248–3260 Clarke RB, Spence K, Anderson E et al (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456 Cairns J (2006) Cancer and the immortal strand hypothesis. Genetics 174:1069–1072 Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681–687 Welm BE, Tepera SB, Venezia T et al (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56 Gudjonsson T et al (2002) Isolation, immortalization and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16:693–706 Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997 Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88 Asselin-Labat M, Shackleton M, Stingl J et al (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014 Sleeman KE, Kendrick H, Robertson D et al (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 176:19–26 Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991 Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828 Wright MH, Calcagno AM, Salcido CD et al (2008) Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10 Kalirai H, Clarke RB (2006) Human breast epithelial stem cells and their regulation. J Pathol 208(1):7–16 Kakarala M, Wicha MS, Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26(17):2813–2820 Jones DL, Wagers AJ (2008) No place like home: Anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9(1):11–21 Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118(Pt 16):3585–3594 Stumpf WE, Narbaitz R, Sar M (1980) Estrogen receptors in the fetal mouse. J Steroid Biochem 12:55–64 Brisken C, Heineman A, Chavarria T et al (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14(6):650–654 Daniel CW, Silberstein GB, Strickland P (1987) Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 47(22):6052–6057 Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A 103(7):2196–2201 Savarese TM, Strohsnitter WC, Low HP et al (2007) Correlation of umbilical cord blood hormones and growth factors with stem cell potential: Implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res 9(3):R29 Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270 Ahlgren M, Melbye M, Wohlfahrt J, Sørensen T (2004) Growth patterns and the risk of breast cancer in women. N Engl J Med 351:1619–1626 van Garderen E, Schalken JA (2002) Morphogenic and tumorigenic potentials of the mammary growth hormone/growth hormone receptor system. Mol Cell Endocrinol 197(1–2):153–165 de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37 Kohrt HE, Nouri N, Nowels K et al (2005) Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med 2(9):e284 Ménard S, Tomasic G, Casalini P et al (1997) Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res 3(5):817–819 Rody A, Holtrich U, Pusztai L et al (2009) T-cell metagene predicts a favourable prognosis in estrogen receptor negative and HER2 positive breast cancers. Breast Cancer Res 11(2):R15 Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988 Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902 Rody A, Holtrich U, Gaetje R et al (2007) Poor outcome in estrogen receptor-positive breast cancers predicted by loss of plexin B1. Clin Cancer Res 13(4):1115–1122 Rody A, Karn T, Ruckhäberle E et al (2009) Loss of Plexin B1 is highly prognostic in low proliferating ER positive breast cancers--results of a large scale microarray analysis. Eur J Cancer 45(3):405–413 Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226 Palacios J, Honrado E, Osorio A et al (2005) Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat 90(1):5–14 Liu S, Ginestier C, Charafe-Jauffret E et al (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105(5):1680–1685 Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872 Rody A, Karn T, Ruckhaeberle E et al (2008) Differentially expressed genes of reprogrammed human pluripotent stem cells in breast cancer. Eur J Cancer 44(13):1789–1792 Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507 Dontu G, Liu S, Wicha MS (2005) Stem cells in mammary development and carcinogenesis: Implications for prevention and treatment. Stem Cell Rev 1:207–213 Jenkins PJ (2004) Acromegaly and cancer. Horm Res 62 (Suppl):108–115 Russo J, Balogh GA, Heulings R et al (2006) Molecular basis of pregnancy-induced breast cancer protection. Eur J Cancer Prev 15:306–342 Hilakivi-Clarke L, de Assis S (2006) Fetal origins of breast cancer. Trends Endocrinol Metab 17:340–348 Wang Z, Zhang Y, Banerjee S et al (2006) Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer 106:2503–2513 Jaiswal AS, Marlow BP, Gupta N et al (2002) Betacatenin- mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)- induced growth arrest and apoptosis in colon cancer cells. Oncogene 21:8414–8427 Pahlke G, Ngiewih Y, Kern M et al (2006) Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. J Agric Food Chem 54:7075–7082 Nagler A, Riklis I, Kletter Y et al (1986) Effect of 1,25 dihydroxyvitamin D3 and retinoic acid on normal human pluripotent (CFU-mix), erythroid (BFU-E) and myeloid (CFU-C) progenitor cell growth and differentiation patterns. Exp Hematol 14:60–65 Sakariassen PO, Immervoll H, Chekenya M (2007) Cancer stem cells as mediators of treatment resistance in brain tumors: Status and controversies. Neoplasia 9:882–892 Kim M, Turnquist H, Jackson J et al (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28 Smalley MJ, Clarke RB (2005) The mammary gland side population: A putative stem/progenitor cell marker? J Mammary Gland Biol Neoplasia 10:37–47 Litingtung Y, Lawler AM, Sebald SM et al (1999) Growth retardation and neonatal lethality in mice with a homozygous deletion in the C-terminal domain of RNA polymerase II. Mol Gen Gen 261:100–105 Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785 Li X, Lewis MT, Huang J et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679 Kaufmann M, Heider KH, Sinn HP et al (1995) CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet 345(8950):615–619 Abraham BK, Fritz P, McClellan M et al (2005) Prevalence of CD44/CD24–/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159 Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621 Smid M, Wang Y, Zhang Y et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68(9):3108–3114