Vật liệu của Darwin: Những tác động tiến hóa của khả năng đa quy mô trong sinh học phát triển

Cellular and Molecular Life Sciences - Tập 80 Số 6 - 2023
Michael Levin1
1Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA

Tóm tắt

Tóm tắt

Khía cạnh quan trọng của tiến hóa là lớp sinh lý phát triển được điều chỉnh giữa kiểu gen và kiểu hình giải phẫu. Trong khi nhiều công trình đã nghiên cứu về sự tiến hóa của các cơ chế phát triển và khả năng thích nghi của các cấu trúc di truyền cụ thể với sự phức tạp mới nổi, một khía cạnh chưa được khám phá đầy đủ là: những hàm ý về năng lực giải quyết vấn đề hình thái đối với chính quá trình tiến hóa. Các tế bào mà tiến hóa khai thác không phải là những thành phần thụ động: thay vào đó, chúng có nhiều khả năng hành vi vì chúng phát sinh từ những sinh vật đơn bào tổ tiên với vốn gen phong phú. Ở các sinh vật đa bào, những khả năng này cần phải được điều chỉnh, và có thể được khai thác bởi quá trình tiến hóa. Cụ thể, các cấu trúc sinh học có một kiến trúc năng lực đa quy mô nơi các tế bào, mô và cơ quan thể hiện tính dẻo dai điều chỉnh - khả năng điều chỉnh để ứng phó với các rối loạn như chấn thương bên ngoài hoặc sự chỉnh sửa bên trong và vẫn thực hiện các nhiệm vụ thích ứng cụ thể trên các không gian vấn đề về trao đổi chất, phiên mã, sinh lý học và giải phẫu. Tại đây, tôi sẽ xem xét các ví dụ minh họa cách mà các mạch sinh lý hướng dẫn hành vi tập thể của tế bào mang lại các tính chất tính toán cho vật liệu có sự tác động phục vụ như nền tảng cho quá trình tiến hóa. Tôi sau đó khám phá những cách mà trí thông minh tập thể của các tế bào trong quá trình hình thành hình thái ảnh hưởng đến tiến hóa, cung cấp một góc nhìn mới về quá trình tìm kiếm tiến hóa. Tính năng then chốt này của phần mềm sinh lý của sự sống giúp giải thích tốc độ và độ bền đáng chú ý của tiến hóa sinh học, và làm sáng tỏ mối quan hệ giữa bộ gen và kiểu hình giải phẫu chức năng.

Từ khóa


Tài liệu tham khảo

Noble D (2022) Modern physiology vindicates Darwin’s dream. Exp Physiol 107(9):1015–1028. https://doi.org/10.1113/EP090133

Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8(12):921–931. https://doi.org/10.1038/nrg2267

Schlosser G, Wagner GP (2004) Modularity in development and evolution. University of Chicago Press, Chicago

Calabretta R, Ferdinando AD, Wagner GP, Parisi D (2003) What does it take to evolve behaviorally complex organisms? Biosystems 69(2–3):245–262. https://doi.org/10.1016/s0303-2647(02)00140-5

Laubichler MD, Wagner GP (2001) How molecular is molecular developmental biology? A reply to Alex Rosenberg’s reductionism redux: computing the embryo. Biol Philos 16(1):53–68. https://doi.org/10.1023/a:1006750126784

Gerhart J, Kirschner M (2007) The theory of facilitated variation. Proc Natl Acad Sci U S A 104(Suppl 1):8582–8589. https://doi.org/10.1073/pnas.0701035104

Gordon R, Stone R (2017) Cybernetic embryo. In: Seckbach J, Gordon R (eds) Biocommunication: sign-mediated interactions between cells and organisms. University of Chicago Press, Chicago, pp 111–164

Apter MJ (1966) Cybernetics and development. Pergamon Press, New York

Grossberg S (1978) Communication, memory, and development. In: Snell F (ed) Rosen R Progress in Theoretical Biology. Academic Press, Cambridge, pp 183–232

Dodig-Crnkovic G (2022) Cognition as morphological/morphogenetic embodied computation in vivo. Entropy (Basel) 24(11):1576. https://doi.org/10.3390/e24111576

Levin M (2023) collective intelligence of morphogenesis as a teleonomic process. In: Corning PA, Kauffman SA, Noble D, Shapiro JA, Vane-Wright RI, Pross A (eds) Evolution “on purpose”: teleonomy in living systems. MIT Press, Cambridge, pp 175–198

Levin M (2021) Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem Biophys Res Commun 564:114–133. https://doi.org/10.1016/j.bbrc.2020.10.077

Levin M (2019) The computational boundary of a “self”: developmental bioelectricity drives multicellularity and scale-free cognition. Front Psychol 10:2688. https://doi.org/10.3389/fpsyg.2019.02688

Levin M (2022) Technological approach to mind everywhere: an experimentally-grounded framework for understanding diverse bodies and minds. Front Syst Neurosci 16:768201. https://doi.org/10.3389/fnsys.2022.768201

Furusawa C, Kaneko K (1998) Emergence of rules in cell society: differentiation, hierarchy, and stability. Bull Math Biol 60(4):659–687. https://doi.org/10.1006/bulm.1997.0034

Sonnenschein C, Soto AM (1999) The society of cells: cancer control of cell proliferation. Springer, Oxford, New York

McMillen P, Oudin MJ, Levin M, Payne SL (2021) Beyond neurons: long distance communication in development and cancer. Front Cell Dev Biol. 9:739024. https://doi.org/10.3389/fcell.2021.739024

Rubin H (1990) On the nature of enduring modifications induced in cells and organisms. Am J Physiol 258(2 Pt 1):L19-24. https://doi.org/10.1152/ajplung.1990.258.2.L19

Rubin H (2007) Ordered heterogeneity and its decline in cancer and aging. Adv Cancer Res 98:117–147. https://doi.org/10.1016/S0065-230X(06)98004-X

Lobo D, Solano M, Bubenik GA, Levin M (2014) A linear-encoding model explains the variability of the target morphology in regeneration. J R Soc Interface 11(92):20130918. https://doi.org/10.1098/rsif.2013.0918

Sabour D, Scholer HR (2012) Reprogramming and the mammalian germline: the Weismann barrier revisited. Curr Opin Cell Biol 24(6):716–723. https://doi.org/10.1016/j.ceb.2012.08.006

Jablonka E, Lamb MJ (1995) Epigenetic inheritance and evolution : the Lamarckian dimension. Oxford University Press, Oxford, New York

Jablonka E (1994) Inheritance systems and the evolution of new levels of individuality. J Theor Biol 170(3):301–309. https://doi.org/10.1006/jtbi.1994.1191

Nanos V, Levin M (2022) Multi-scale Chimerism: an experimental window on the algorithms of anatomical control. Cells Dev. 169:203764. https://doi.org/10.1016/j.cdev.2021.203764

Godfrey-Smith P (2017) The subject as cause and effect of evolution. Interface Focus 7(5):20170022. https://doi.org/10.1098/rsfs.2017.0022

Newman SA (2016) “Biogeneric” developmental processes: drivers of major transitions in animal evolution. Philos Trans R Soc Lond B Biol Sci 371(1701):20150443. https://doi.org/10.1098/rstb.2015.0443

Santos M, Szathmáry E, Fontanari JF (2015) Phenotypic plasticity, the Baldwin effect, and the speeding up of evolution: the computational roots of an illusion. J Theor Biol 371:127–136. https://doi.org/10.1016/j.jtbi.2015.02.012

Jablonka E, Lamb MJ (2015) The inheritance of acquired epigenetic variations. Int J Epidemiol 44(4):1094–1103. https://doi.org/10.1093/ije/dyv020

Kull K (2014) Adaptive evolution without natural selection. Biol J Linn Soc 112(2):287–294. https://doi.org/10.1111/bij.12124

Moore LS, Stolovicki E, Braun E (2013) Population dynamics of metastable growth-rate phenotypes. PLoS ONE 8(12):e81671. https://doi.org/10.1371/journal.pone.0081671

Newman SA, Bhat R (2009) Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form. Int J Dev Biol 53(5–6):693–705. https://doi.org/10.1387/ijdb.072481sn

Ho MW, Saunders PT, Fox SW (1987) Through a neo-Darwinian glass darkly. BioEssays 6(1):3–4. https://doi.org/10.1002/bies.950060102

Noble D (2017) Dance to the tune of life: biological relativity. Cambridge University Press, Cambridge

Watson RA, Mills R, Buckley CL, Kouvaris K, Jackson A, Powers ST, Cox C, Tudge S, Davies A, Kounios L, Power D (2016) Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo evo-eco and evolutionary transitions. Evol Biol 43(4):553–581. https://doi.org/10.1007/s11692-015-9358-z

Kouvaris K, Clune J, Kounios L, Brede M, Watson RA (2017) How evolution learns to generalise: Using the principles of learning theory to understand the evolution of developmental organisation. PLoS Comput Biol 13(4):e1005358. https://doi.org/10.1371/journal.pcbi.1005358

Hinton GE, Nowlan J (1987) How learning can guide evolution. Complex Syst 1(3):495–502

Davies J, Levin M (2023) Synthetic morphology with agential materials. Nat Rev Bioeng 1(1):46–59. https://doi.org/10.1038/s44222-022-00001-9

Heylighen F (2013) Self-organization in communicating groups: the emergence of coordination, shared references and collective intelligence. In: Massip-Bonet À, Bastardas-Boada A (eds) Complexity perspectives on language, communication and society. Springer, Berlin, Heidelberg, pp 117–149

Couzin I (2007) Collective minds. Nature 445(7129):715. https://doi.org/10.1038/445715a

Chandebois R (1980) Cell sociology and the problem of automation in the development of pluricellular animals. Acta Biotheor 29(1):1–35. https://doi.org/10.1007/BF00045880

James W (1890) The principles of psychology. H. Holt and company, New York

Bongard J, Levin M (2023) There’s plenty of room right here: biological systems as evolved, overloaded multi-scale machines. Biomimetics 8(1):110. https://doi.org/10.3390/biomimetics8010110

Fields C, Levin M (2020) Scale-free biology: integrating evolutionary and developmental thinking. BioEssays 42(8):e1900228. https://doi.org/10.1002/bies.201900228

McFadden J (2002) The conscious electromagnetic information (Cemi) field theory—the hard problem made easy? J Conscious Stud 9(8):45–60

McFadden J, Al-Khalili J (1999) A quantum mechanical model of adaptive mutation. Biosystems 50(3):203–211. https://doi.org/10.1016/s0303-2647(99)00004-0

Watson RA, Levin M, Buckley CL (2022) Design for an individual: connectionist approaches to the evolutionary transitions in individuality. Front Ecol Evol 10:823588. https://doi.org/10.3389/fevo.2022.823588

Buckley CL, Lewens T, Levin M, Millidge B, Tschantz A, Watson RA (2023) Natural Induction. Manuscript in preparation.

Watson RA, Szathmáry E (2016) How can evolution learn? Trends Ecol Evol 31(2):147–157. https://doi.org/10.1016/j.tree.2015.11.009

Power DA, Watson RA, Szathmáry E, Mills R, Powers ST, Doncaster CP, Czapp B (2015) What can ecosystems learn? Expanding evolutionary ecology with learning theory. Biol Direct 10:69. https://doi.org/10.1186/s13062-015-0094-1

Watson RA, Wagner GP, Pavlicev M, Weinreich DM, Mills R (2014) The evolution of phenotypic correlations and “developmental memory.” Evolution 68(4):1124–1138. https://doi.org/10.1111/evo.12337

Timsit Y, Gregoire SP (2021) Towards the idea of molecular brains. Int J Mol Sci 22(21):11868. https://doi.org/10.3390/ijms222111868

Balázsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision making and biological noise: from microbes to mammals. Cell 144(6):910–925. https://doi.org/10.1016/j.cell.2011.01.030

Lyon P, Keijzer F, Arendt D, Levin M (2021) Reframing cognition: getting down to biological basics. Philos Trans R Soc Lond B Biol Sci 376(1820):20190750. https://doi.org/10.1098/rstb.2019.0750

Lyon P (2006) The biogenic approach to cognition. Cogn Process 7(1):11–29. https://doi.org/10.1007/s10339-005-0016-8

Baluška F, Levin M (2016) On having no head: cognition throughout biological systems. Front Psychol 7:902. https://doi.org/10.3389/fpsyg.2016.00902

Levin M, Pezzulo G, Finkelstein JM (2017) Endogenous bioelectric signaling networks: exploiting voltage gradients for control of growth and form. Annu Rev Biomed Eng 19:353–387. https://doi.org/10.1146/annurev-bioeng-071114-040647

Pezzulo G, Levin M (2016) Top-down models in biology: explanation and control of complex living systems above the molecular level. J R Soc Interface 13(124):20160555. https://doi.org/10.1098/rsif.2016.0555

Pezzulo G, Levin M (2015) Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integr Biol 7(12):1487–1517. https://doi.org/10.1039/c5ib00221d

Schreier HI, Soen Y, Brenner N (2017) Exploratory adaptation in large random networks. Nat Commun 8:14826. https://doi.org/10.1038/ncomms14826

Soen Y, Knafo M, Elgart M (2015) A principle of organization which facilitates broad Lamarckian-like adaptations by improvisation. Biol Direct 10:68. https://doi.org/10.1186/s13062-015-0097-y

Soen Y (2014) Environmental disruption of host-microbe co-adaptation as a potential driving force in evolution. Front Genet 5:168. https://doi.org/10.3389/fgene.2014.00168

Newman SA (2019) Inherency of form and function in animal development and evolution. Front Physiol 10:702. https://doi.org/10.3389/fphys.2019.00702

Newman SA (2019) Inherency and homomorphy in the evolution of development. Curr Opin Genet Dev 57:1–8. https://doi.org/10.1016/j.gde.2019.05.006

Kauffman S, Clayton P (2006) On emergence, agency, and organization. Biol Philos 21(4):501–521. https://doi.org/10.1007/s10539-005-9003-9

Kauffman SA (1993) The origins of order: self organization and selection in evolution. Oxford University Press, New York

Kauffman SA, Johnsen S (1991) Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. J Theor Biol 149(4):467–505. https://doi.org/10.1016/s0022-5193(05)80094-3

Chvykov P, Berrueta TA, Vardhan A, Savoie W, Samland A, Murphey TD, Wiesenfeld K, Goldman DI, England JL (2021) Low rattling: A predictive principle for self-organization in active collectives. Science 371(6524):90–95. https://doi.org/10.1126/science.abc6182

Perunov N, Marsland RA, England JL (2016) Statistical physics of adaptation. Phys Rev X 6(2):021036. https://doi.org/10.1103/PhysRevX.6.021036

Ginsburg S, Jablonka E (2021) Evolutionary transitions in learning and cognition. Philos Trans R Soc Lond B Biol Sci 376(1821):20190766. https://doi.org/10.1098/rstb.2019.0766

Jablonka E (2017) The evolutionary implications of epigenetic inheritance. Interface Focus 7(5):20160135. https://doi.org/10.1098/rsfs.2016.0135

Bourrat P, Lu Q, Jablonka E (2017) Why the missing heritability might not be in the DNA. BioEssays 39(7):1700067. https://doi.org/10.1002/bies.201700067

Ginsburg S, Jablonka E (2015) The teleological transitions in evolution: a gantian view. J Theor Biol 381:55–60. https://doi.org/10.1016/j.jtbi.2015.04.007

Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J, Wray GA, Hoekstra HE, Futuyma DJ, Lenski RE, Mackay TF, Schluter D, Strassmann JE (2014) Does evolutionary theory need a rethink? Nature 514(7521):161–164. https://doi.org/10.1038/514161a

Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR, Borowsky RL, Lindquist S, Tabin CJ (2013) Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342(6164):1372–1375. https://doi.org/10.1126/science.1240276

West-Eberhard MJ (2005) Phenotypic accommodation: adaptive innovation due to developmental plasticity. J Exp Zool B Mol Dev Evol 304(6):610–618. https://doi.org/10.1002/jez.b.21071

West-Eberhard MJ (1998) Evolution in the light of developmental and cell biology, and vice versa. Proc Natl Acad Sci U S A 95(15):8417–8419. https://doi.org/10.1073/pnas.95.15.8417

Sultan SE, Moczek AP, Walsh D (2022) Bridging the explanatory gaps: What can we learn from a biological agency perspective? BioEssays 44(1):e2100185. https://doi.org/10.1002/bies.202100185

Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc Biol Sci 278(1719):2705–2713. https://doi.org/10.1098/rspb.2011.0971

Miller WB Jr, Baluška F, Torday JS (2020) Cellular senomic measurements in cognition-based evolution. Prog Biophys Mol Biol 156:20–33. https://doi.org/10.1016/j.pbiomolbio.2020.07.002

Baluška F, Reber AS, Miller WB Jr (2022) Cellular sentience as the primary source of biological order and evolution. Biosystems 218:104694. https://doi.org/10.1016/j.biosystems.2022.104694

Baluška F, Miller WB, Reber AS (2022) Cellular and evolutionary perspectives on organismal cognition: from unicellular to multicellular organisms. Biol J Linn Soc. https://doi.org/10.1093/biolinnean/blac005

Baluška F, Miller WB Jr (2018) Senomic view of the cell: senome versus genome. Commun Integr Biol 11(3):1–9. https://doi.org/10.1080/19420889.2018.1489184

Standen EM, Du TY, Larsson HC (2014) Developmental plasticity and the origin of tetrapods. Nature 513(7516):54–58. https://doi.org/10.1038/nature13708

Ledón-Rettig CC, Pfennig DW, Crespi EJ (2010) Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies. Proc Biol Sci 277(1700):3569–3578. https://doi.org/10.1098/rspb.2010.0877

Sommer RJ (2020) Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215(1):1–13. https://doi.org/10.1534/genetics.120.303163

Fields C, Levin M (2022) Competency in navigating arbitrary spaces as an invariant for analyzing cognition in diverse embodiments. Entropy 24(6):819. https://doi.org/10.3390/e24060819

Watson RA, Buckley CL, Mills R, Davies A (2010) Associative memory in gene regulation networks. In: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems (Odense Denmark). MIT Press, Cambridge, MA. pp. 194–201

Biswas S, Clawson W, Levin M (2023) Learning in transcriptional network models: computational discovery of pathway-level memory and effective interventions. Int J Mol Sci 24(1):285. https://doi.org/10.3390/ijms24010285

Biswas S, Manicka S, Hoel E, Levin M (2021) Gene regulatory networks exhibit several kinds of memory: quantification of memory in biological and random transcriptional networks. iScience. 24(3):102131. https://doi.org/10.1016/j.isci.2021.102131

Emmons-Bell M, Durant F, Tung A, Pietak A, Miller K, Kane A, Martyniuk CJ, Davidian D, Morokuma J, Levin M (2019) Regenerative adaptation to electrochemical perturbation in planaria: a molecular analysis of physiological plasticity. iScience 22:147–165. https://doi.org/10.1016/j.isci.2019.11.014

Vallverdú J, Castro O, Mayne R, Talanov M, Levin M, Baluška F, Gunji Y, Dussutour A, Zenil H, Adamatzky A (2018) Slime mould: the fundamental mechanisms of biological cognition. Biosystems 165:57–70. https://doi.org/10.1016/j.biosystems.2017.12.011

Murugan NJ, Kaltman DH, Jin PH, Chien M, Martinez R, Nguyen CQ, Kane A, Novak R, Ingber DE, Levin M (2021) Mechanosensation mediates long-range spatial decision-making in an aneural organism. Adv Mater 33(34):e2008161. https://doi.org/10.1002/adma.202008161

Boussard A, Delescluse J, Perez-Escudero A, Dussutour A (2019) Memory inception and preservation in slime moulds: the quest for a common mechanism. Philos Trans R Soc Lond B Biol Sci 374(1774):20180368. https://doi.org/10.1098/rstb.2018.0368

Boisseau RP, Vogel D, Dussutour A (2016) Habituation in non-neural organisms: evidence from slime moulds. Proc Biol Sci 283(1829):20160446. https://doi.org/10.1098/rspb.2016.0446

Iwayama K, Zhu L, Hirata Y, Aono M, Hara M, Aihara K (2016) Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics. Bioinspir Biomim 11(3):036001. https://doi.org/10.1088/1748-3190/11/3/036001

Kriegman S, Cheney N, Bongard J (2018) How morphological development can guide evolution. Sci Rep 8(1):13934. https://doi.org/10.1038/s41598-018-31868-7

Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC (2015) Group decisions. Shared decision-making drives collective movement in wild baboons. Science 348(6241):1358–1361. https://doi.org/10.1126/science.aaa5099

Couzin ID (2009) Collective cognition in animal groups. Trends Cogn Sci 13(1):36–43. https://doi.org/10.1016/j.tics.2008.10.002

Rosenblueth A, Wiener N, Bigelow J (1943) Behavior, purpose, and teleology. Philos Sci 10:18–24

Engel D, Malone TW (2018) Integrated information as a metric for group interaction. PLoS ONE 13(10):e0205335. https://doi.org/10.1371/journal.pone.0205335

Solé R, Amor DR, Duran-Nebreda S, Conde-Pueyo N, Carbonell-Ballestero M, Montañez R (2016) Synthetic collective intelligence. Biosystems 148:47–61. https://doi.org/10.1016/j.biosystems.2016.01.002

Krakauer D, Bertschinger N, Olbrich E, Flack JC, Ay N (2020) The information theory of individuality. Theory Biosci 139(2):209–223. https://doi.org/10.1007/s12064-020-00313-7

Flack JC (2017) Coarse-graining as a downward causation mechanism. Philos Trans A Math Phys Eng Sci 375(2109):20160338. https://doi.org/10.1098/rsta.2016.0338

Daniels BC, Ellison CJ, Krakauer DC, Flack JC (2016) Quantifying collectivity. Curr Opin Neurobiol 37:106–113. https://doi.org/10.1016/j.conb.2016.01.012

Pio-Lopez L, Kuchling F, Tung A, Pezzulo G, Levin M (2022) Active inference, morphogenesis, and computational psychiatry. Front Comput Neurosci 16:988977. https://doi.org/10.3389/fncom.2022.988977

Pezzulo G, LaPalme J, Durant F (1821) Levin M (2021) Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration. Philos Trans R Soc Lond B Biol Sci 376:20190765. https://doi.org/10.1098/rstb.2019.0765

Levin M (2021) Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184(8):1971–1989. https://doi.org/10.1016/j.cell.2021.02.034

Levin M (2021) Bioelectrical approaches to cancer as a problem of the scaling of the cellular self. Prog Biophys Mol Biol 165:102–113. https://doi.org/10.1016/j.pbiomolbio.2021.04.007

Moore D, Walker SI, Levin M (2017) Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. Converg Sci Phys Oncol. 3(4):043001. https://doi.org/10.1088/2057-1739/aa8548

Macia J, Vidiella B, Solé RV (2017) Synthetic associative learning in engineered multicellular consortia. J R Soc Interface 14(129):20170158. https://doi.org/10.1098/rsif.2017.0158

Urrios A, Macia J, Manzoni R, Conde N, Bonforti A, de Nadal E, Posas F, Solé R (2016) A synthetic multicellular memory device. ACS Synth Biol 5(8):862–873. https://doi.org/10.1021/acssynbio.5b00252

Solé R (2016) The major synthetic evolutionary transitions. Philos Trans R Soc Lond B Biol Sci 371(1701):20160175. https://doi.org/10.1098/rstb.2016.0175

Solé R (2016) Synthetic transitions: towards a new synthesis. Philos Trans R Soc Lond B Biol Sci 371(1701):20150438. https://doi.org/10.1098/rstb.2015.0438

Kriegman S, Walker S, Shah D, Levin M, Kramer-Bottiglio R, Bongard J (2019) Automated shapeshifting for function recovery in damaged robots. In: Proceedings of Robotics: Science and Systems XV (Freiburg im Breisgau, Germany). pp. 28. https://doi.org/10.15607/RSS.2019.XV.028

Cheney N, Bongard JC, Lipson H (2015) Evolving Soft Robots in Tight Spaces. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference (Madrid, Spain). Association for Computing Machinery: New York, NY. pp. 935–942. https://doi.org/10.1145/2739480.2754662

Auerbach JE, Bongard JC (2011) Evolving Complete Robots with CPPN-NEAT: The Utility of Recurrent Connections. Gecco-2011: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference: 1475–1482. https://doi.org/10.1145/2001576.2001775

Lehman J, Clune J, Misevic D, Adami C, Altenberg L, Beaulieu J, Bentley PJ, Bernard S, Beslon G, Bryson DM, Cheney N, Chrabaszcz P, Cully A, Doncieux S, Dyer FC, Ellefsen KO, Feldt R, Fischer S, Forrest S, Frenoy A, Gagne C, Le Goff L, Grabowski LM, Hodjat B, Hutter F, Keller L, Knibbe C, Krcah P, Lenski RE, Lipson H, MacCurdy R, Maestre C, Miikkulainen R, Mitri S, Moriarty DE, Mouret JB, Nguyen A, Ofria C, Parizeau M, Parsons D, Pennock RT, Punch WF, Ray TS, Schoenauer M, Schulte E, Sims K, Stanley KO, Taddei F, Tarapore D, Thibault S, Watson R, Weimer W, Yosinski J (2020) The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Artif Life 26(2):274–306. https://doi.org/10.1162/artl_a_00319

Rieffel J, Knox D, Smith S, Trimmer B (2014) Growing and evolving soft robots. Artif Life 20(1):143–162. https://doi.org/10.1162/ARTL_a_00101

Harvey I, Di Paolo E, Wood R, Quinn M, Tuci E (2005) Evolutionary robotics: a new scientific tool for studying cognition. Artif Life 11(1–2):79–98. https://doi.org/10.1162/1064546053278991

Watson RA, Mills R, Buckley CL (2011) Global adaptation in networks of selfish components: emergent associative memory at the system scale. Artif Life 17(3):147–166. https://doi.org/10.1162/artl_a_00029

Sridhar VH, Li L, Gorbonos D, Nagy M, Schell BR, Sorochkin T, Gov NS, Couzin ID (2021) The geometry of decision-making in individuals and collectives. Proc Natl Acad Sci U S A 118(50):e2102157118. https://doi.org/10.1073/pnas.2102157118

Sun Y, Do H, Gao J, Zhao R, Zhao M, Mogilner A (2013) Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field. Curr Biol 23(7):569–574. https://doi.org/10.1016/j.cub.2013.02.026

Kriegman S, Blackiston D, Levin M, Bongard J (2020) A scalable pipeline for designing reconfigurable organisms. Proc Natl Acad Sci U S A 117(4):1853–1859. https://doi.org/10.1073/pnas.1910837117

Blackiston D, Lederer EK, Kriegman S, Garnier S, Bongard J, Levin M (2021) A cellular platform for the development of synthetic living machines. Sci Robot 6(52):eabf1571. https://doi.org/10.1126/scirobotics.abf1571

Kriegman S, Blackiston D, Levin M, Bongard J (2021) Kinematic self-replication in reconfigurable organisms. Proc Natl Acad Sci U S A 118(49):e2112672118. https://doi.org/10.1073/pnas.2112672118

Gumuskaya G, Srivastava P, Cooper BG, Lesser H, Semegran B, Garnier S, Levin M (2022) Motile living biobots self-construct from adult human somatic progenitor seed cells. bioRxiv. https://doi.org/10.1101/2022.08.04.502707

Tseng A, Levin M (2013) Cracking the bioelectric code: probing endogenous ionic controls of pattern formation. Commun Integr Biol. 6(1):e22595. https://doi.org/10.4161/cib.22595

Adams DS, Tseng AS, Levin M (2013) Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo. Biol Open 2(3):306–313. https://doi.org/10.1242/bio.20133665

Tseng AS, Beane WS, Lemire JM, Masi A, Levin M (2010) Induction of vertebrate regeneration by a transient sodium current. J Neurosci 30(39):13192–13200. https://doi.org/10.1523/JNEUROSCI.3315-10.2010

Sala M, Casacci LP, Balletto E, Bonelli S, Barbero F (2014) Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS ONE 9(4):e94341. https://doi.org/10.1371/journal.pone.0094341

Watson RA, Thies C (2019) Are Developmental Plasticity, Niche Construction, and Extended Inheritance Necessary for Evolution by Natural Selection? The Role of Active Phenotypes in the Minimal Criteria for Darwinian Individuality. In: T. U, Laland KN (eds), Evolutionary Causation: Biological and Philosophical Reflections. MIT Press: Cambridge, MA

Constant A, Ramstead MJD, Veissiere SPL, Campbell JO, Friston KJ (2018) A variational approach to niche construction. J R Soc Interface 15(141):20170685. https://doi.org/10.1098/rsif.2017.0685

Zhong R, Zhang F, Yang Z, Li Y, Xu Q, Lan H, Lang S, Cyganek L, Burgermeister E, El-Battrawy I, Zhou X, Akin I, Borggrefe M (2022) Regulation of ion channel function in human-induced pluripotent stem cell-derived cardiomyocytes by cancer cell secretion through DNA methylation. Front Cardiovasc Med. 9:839104. https://doi.org/10.3389/fcvm.2022.839104

Webster JP, McConkey GA (2010) Toxoplasma gondii-altered host behaviour: clues as to mechanism of action. Folia Parasitol 57(2):95–104. https://doi.org/10.14411/fp.2010.012

Morales J, Ehret G, Poschmann G, Reinicke T, Maurya AK, Kroninger L, Zanini D, Wolters R, Kalyanaraman D, Krakovka M, Baumers M, Stuhler K, Nowack ECM (2023) Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr Biol 33(1):28-40.e7. https://doi.org/10.1016/j.cub.2022.11.020

Loreto RG, Hughes DP (2019) The metabolic alteration and apparent preservation of the zombie ant brain. J Insect Physiol 118:103918. https://doi.org/10.1016/j.jinsphys.2019.103918

Rule JS, Tenenbaum JB, Piantadosi ST (2020) The child as hacker. Trends Cogn Sci 24(11):900–915. https://doi.org/10.1016/j.tics.2020.07.005

Mani MS (1964) Ecology of plant galls. Springer, Dordrecht

Jackson TNW, Koludarov I (2020) How the toxin got its toxicity. Front Pharmacol 11:574925. https://doi.org/10.3389/fphar.2020.574925

Rahwan I, Cebrian M, Obradovich N, Bongard J, Bonnefon JF, Breazeal C, Crandall JW, Christakis NA, Couzin ID, Jackson MO, Jennings NR, Kamar E, Kloumann IM, Larochelle H, Lazer D, McElreath R, Mislove A, Parkes DC, Pentland A, Roberts ME, Shariff A, Tenenbaum JB, Wellman M (2019) Machine behaviour. Nature 568(7753):477–486. https://doi.org/10.1038/s41586-019-1138-y

Gawne R, McKenna KZ, Levin M (2020) Competitive and coordinative interactions between body parts produce adaptive developmental outcomes. BioEssays 42(8):e1900245. https://doi.org/10.1002/bies.201900245

Smiley P, Levin M (2022) Competition for finite resources as coordination mechanism for morphogenesis: an evolutionary algorithm study of digital embryogeny. Biosystems 221:104762. https://doi.org/10.1016/j.biosystems.2022.104762

Chong I, Proctor RW (2020) On the evolution of a radical concept: affordances according to gibson and their subsequent use and development. Perspect Psychol Sci 15(1):117–132. https://doi.org/10.1177/1745691619868207

Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Süel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527(7576):59–63. https://doi.org/10.1038/nature15709

Fields C, Bischof J, Levin M (2020) Morphological coordination: a common ancestral function unifying neural and non-neural signaling. Physiology 35(1):16–30. https://doi.org/10.1152/physiol.00027.2019

Lobikin M, Lobo D, Blackiston DJ, Martyniuk CJ, Tkachenko E, Levin M (2015) Serotonergic regulation of melanocyte conversion: a bioelectrically regulated network for stochastic all-or-none hyperpigmentation. Sci Signal. 8(397):ra99. https://doi.org/10.1126/scisignal.aac6609

Blackiston D, Adams DS, Lemire JM, Lobikin M, Levin M (2011) Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis Model Mech 4(1):67–85. https://doi.org/10.1242/dmm.005561

Morokuma J, Blackiston D, Adams DS, Seebohm G, Trimmer B, Levin M (2008) Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proc Natl Acad Sci U S A 105(43):16608–16613. https://doi.org/10.1073/pnas.0808328105

Lobo D, Lobikin M, Levin M (2017) Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus. Sci Rep 7:41339. https://doi.org/10.1038/srep41339

Vandenberg LN, Morrie RD, Adams DS (2011) V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev Dyn 240(8):1889–1904. https://doi.org/10.1002/dvdy.22685

Adams DS, Uzel SG, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M (2016) Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 594(12):3245–3270. https://doi.org/10.1113/JP271930

Pai VP, Aw S, Shomrat T, Lemire JM, Levin M (2012) Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139(2):313–323. https://doi.org/10.1242/dev.073759

Letendre K, Moses ME (2013) Synergy in Ant Foraging Strategies: Memory and Communication Alone and In Combination. In: Proceedings of the 2013 Genetic and Evolutionary Computation Conference (Amsterdam, The Netherlands). Association for Computing Machinery: New York, NY. pp. 41–48. https://doi.org/10.1145/2463372.2463389

Planqué R, van den Berg JB, Franks NR (2010) Recruitment strategies and colony size in ants. PLoS ONE 5(8):e11664. https://doi.org/10.1371/journal.pone.0011664

Beane WS, Morokuma J, Adams DS, Levin M (2011) A chemical genetics approach reveals H, K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem Biol 18(1):77–89. https://doi.org/10.1016/j.chembiol.2010.11.012

Beane WS, Morokuma J, Lemire JM, Levin M (2013) Bioelectric signaling regulates head and organ size during planarian regeneration. Development 140(2):313–322. https://doi.org/10.1242/dev.086900

Williams KB, Bischof J, Lee FJ, Miller KA, LaPalme JV, Wolfe BE, Levin M (2020) Regulation of axial and head patterning during planarian regeneration by a commensal bacterium. Mech Dev 163:103614. https://doi.org/10.1016/j.mod.2020.103614

Tasaki KM (2013) Circular causality in integrative multi-scale systems biology and its interaction with traditional medicine. Prog Biophys Mol Biol 111(2–3):144–146. https://doi.org/10.1016/j.pbiomolbio.2012.09.005

Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2(1):55–64. https://doi.org/10.1098/rsfs.2011.0067

Mathews J, Chang J, Devlin L, Levin M (2022) Cellular signaling pathways as plastic proto-cognitive systems implications for biomedicine. OSF Preprints. https://doi.org/10.31219/osf.io/c6n9r

Corning PA (2007) Control information theory: the ‘missing link’ in the science of cybernetics. Syst Res Behav Sci 24(3):297–311. https://doi.org/10.1002/sres.808

McShea DW (2012) Upper-directed systems: a new approach to teleology in biology. Biol Philos 27(5):663–684. https://doi.org/10.1007/s10539-012-9326-2

McShea DW (2016) Freedom and purpose in biology. Stud Hist Philos Biol Biomed Sci 58:64–72. https://doi.org/10.1016/j.shpsc.2015.12.002

McShea DW (2013) Machine wanting. Stud Hist Philos Biol Biomed Sci 44(4 Pt B):679–687. https://doi.org/10.1016/j.shpsc.2013.05.015

Heylighen F (2022) The meaning and origin of goal-directedness: a dynamical systems perspective. Biol J Linn Soc. https://doi.org/10.1093/biolinnean/blac060

Corning PA (2022) A systems theory of biological evolution. Biosystems 214: 104630. https://doi.org/10.1016/j.biosystems.2022.104630

Busseniers E, Veloz T, Heylighen F (2021) Goal directedness, chemical organizations, and cybernetic mechanisms. Entropy 23(8):1039. https://doi.org/10.3390/e23081039

Hoel EP (2018) Agent above, atom below: how agents causally emerge from their underlying microphysics. In: Aguirre A, Foster B, Merali Z (eds) Wandering towards a goal: how can mindless mathematical laws give rise to aims and intention? Springer International Publishing, Cham, pp 63–76

Hoel E (2017) When the map is better than the territory. Entropy 19(5):188. https://doi.org/10.3390/e19050188

Albantakis L, Marshall W, Hoel E, Tononi G (2019) What caused what? A quantitative account of actual causation using dynamical causal networks. Entropy 21(5):459. https://doi.org/10.3390/e21050459

Hoel EP, Albantakis L, Marshall W, Tononi G (2016) Can the macro beat the micro? Integrated information across spatiotemporal scales. Neurosci Conscious. 2016(1):012. https://doi.org/10.1093/nc/niw012

Hoel EP, Albantakis L, Tononi G (2013) Quantifying causal emergence shows that macro can beat micro. Proc Natl Acad Sci U S A 110(49):19790–19795. https://doi.org/10.1073/pnas.1314922110

Lyon P (2019) Of what is “minimal cognition” the half-baked version? Adapt Behav 28(6):407–424. https://doi.org/10.1177/1059712319871360

Clawson WP, Levin M (2022) Endless forms most beautiful 2.0: teleonomy and the bioengineering of chimaeric and synthetic organisms. Biol J Linn Soc. https://doi.org/10.1093/biolinnean/blac073

Harris AK (2018) The need for a concept of shape homeostasis. Biosystems 173:65–72. https://doi.org/10.1016/j.biosystems.2018.09.012

Blackiston DJ, Levin M (2013) Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. J Exp Biol 216(Pt 6):1031–1040. https://doi.org/10.1242/jeb.074963

Farinella-Ferruzza N (1956) The transformation of a tail into limb after xenoplastic transplantation. Experientia 12(8):304–305. https://doi.org/10.1007/bf02159624

Vandenberg LN, Adams DS, Levin M (2012) Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology. Dev Dyn 241(5):863–878. https://doi.org/10.1002/dvdy.23770

Slijper EJ (1942) Biologic anatomical investigations on the bipedal gait and upright posture in mammals—with special reference to a little goat born without forelegs II. Proc K Ned Akad Wet 45(1/5):407–415

Little GE, Lopez-Bendito G, Runker AE, Garcia N, Pinon MC, Chedotal A, Molnar Z, Mitchell KJ (2009) Specificity and plasticity of thalamocortical connections in Sema6A mutant mice. PLoS Biol 7(4):e98. https://doi.org/10.1371/journal.pbio.1000098

Fankhauser G (1945) The effects of changes in chromosome number on amphibian development. Q Rev Biol 20(1):20–78. https://doi.org/10.1086/394703

Harris WA, Hartenstein V (1991) Neuronal determination without cell division in Xenopus embryos. Neuron 6(4):499–515. https://doi.org/10.1016/0896-6273(91)90053-3

Zhang L, Kendrick C, Julich D, Holley SA (2008) Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function. Development 135(12):2065–2070. https://doi.org/10.1242/dev.022673

Fankhauser G (1945) Maintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shape. J Exp Zool 100(3):445–455. https://doi.org/10.1002/jez.1401000310

Ackley D, Littman M (1990) Interactions between learning and evolution. In: Proceedings of artificial life II (Santa Fe, NM). Wiley, Boston, pp 487–509

Levin M (2020) Revisiting Burr and Northrop’s “The Electro-Dynamic Theory of Life” (1935). Biol Theory 15(2):83–90. https://doi.org/10.1007/s13752-020-00341-y

Burr HS, Northrop FSC (1935) The electro-dynamic theory of life. Q Rev Biol 10(3):322–333

Levin M, Martyniuk CJ (2018) The bioelectric code: an ancient computational medium for dynamic control of growth and form. Biosystems 164:76–93. https://doi.org/10.1016/j.biosystems.2017.08.009

Hansen TF (2003) Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69(2–3):83–94. https://doi.org/10.1016/s0303-2647(02)00132-6

Adams DS, Masi A, Levin M (2007) H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134(7):1323–1335. https://doi.org/10.1242/dev.02812

Nieto-Torres JL, Verdiá-Báguena C, Castaño-Rodriguez C, Aguilella VM, Enjuanes L (2015) Relevance of viroporin ion channel activity on viral replication and pathogenesis. Viruses 7(7):3552–3573. https://doi.org/10.3390/v7072786

Moorthy NS, Poongavanam V, Pratheepa V (2014) Viral M2 ion channel protein: a promising target for anti-influenza drug discovery. Mini Rev Med Chem 14(10):819–830. https://doi.org/10.2174/138955751410141020150822

Durant F, Morokuma J, Fields C, Williams K, Adams DS, Levin M (2017) Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophys J 112(10):2231–2243. https://doi.org/10.1016/j.bpj.2017.04.011

Durant F, Bischof J, Fields C, Morokuma J, LaPalme J, Hoi A, Levin M (2019) The role of early bioelectric signals in the regeneration of planarian anterior/posterior polarity. Biophys J 116(5):948–961. https://doi.org/10.1016/j.bpj.2019.01.029

Oviedo NJ, Morokuma J, Walentek P, Kema IP, Gu MB, Ahn JM, Hwang JS, Gojobori T, Levin M (2010) Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev Biol 339(1):188–199. https://doi.org/10.1016/j.ydbio.2009.12.012

Baldwin JM (1896) A new factor in evolution. Am Nat 30:441–445

Sullivan KG, Emmons-Bell M, Levin M (2016) Physiological inputs regulate species-specific anatomy during embryogenesis and regeneration. Commun Integr Biol. 9(4):e1192733. https://doi.org/10.1080/19420889.2016.1192733

Emmons-Bell M, Durant F, Hammelman J, Bessonov N, Volpert V, Morokuma J, Pinet K, Adams DS, Pietak A, Lobo D, Levin M (2015) Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type girardia dorotocephala flatworms. Int J Mol Sci 16(11):27865–27896. https://doi.org/10.3390/ijms161126065

Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183(4676):1654–1655. https://doi.org/10.1038/1831654a0

Lahoz-Beltra R, Hameroff SR, Dayhoff JE (1993) Cytoskeletal logic: a model for molecular computation via Boolean operations in microtubules and microtubule-associated proteins. Biosystems 29(1):1–23. https://doi.org/10.1016/0303-2647(93)90078-q

Rasmussen S, Karampurwala H, Vaidyanath R, Jensen KS, Hameroff S (1990) Computational connectionism within neurons: a model of cytoskeletal automata subserving neural networks. Physica D 42(1–3):428–449. https://doi.org/10.1016/0167-2789(90)90093-5

Craddock TJ, Tuszynski JA, Hameroff S (2012) Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput Biol 8(3):e1002421. https://doi.org/10.1371/journal.pcbi.1002421

Beisson J (2008) Preformed cell structure and cell heredity. Prion 2(1):1–8. https://doi.org/10.4161/pri.2.1.5063

Strzyżewska-Jówko I, Jerka-Dziadosz M, Frankel J (2003) Effect of alteration in the global body plan on the deployment of morphogenesis-related protein epitopes labeled by the monoclonal antibody 12G9 in Tetrahymena thermophila. Protist 154(1):71–90. https://doi.org/10.1078/143446103764928503

Nelsen EM, Frankel J, Jenkins LM (1989) Non-genic inheritance of cellular handedness. Development 105(3):447–456. https://doi.org/10.1242/dev.105.3.447

Fields C, Levin M (2018) Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton-membrane system. Wiley Interdiscip Rev Syst Biol Med. 10(2):e1410. https://doi.org/10.1002/wsbm.1410

Katz Y, Fontana W (2022) Probabilistic inference with polymerizing biochemical circuits. Entropy 24(5):629. https://doi.org/10.3390/e24050629

Katz Y, Springer M, Fontana W (2018) Embodying probabilistic inference in biochemical circuits. arXiv. arXiv:1806.10161v1. https://doi.org/10.48550/arXiv.1806.10161. Accessed 10 April 2023

Katz Y, Springer M (2016) Probabilistic adaptation in changing microbial environments. PeerJ 4:e2716. https://doi.org/10.7717/peerj.2716

McGregor S, Vasas V, Husbands P, Fernando C (2012) Evolution of associative learning in chemical networks. PLoS Comput Biol 8(11):e1002739. https://doi.org/10.1371/journal.pcbi.1002739

Fernando C, Vasas V, Szathmáry E, Husbands P (2011) Evolvable neuronal paths: a novel basis for information and search in the brain. PLoS ONE 6(8):e23534. https://doi.org/10.1371/journal.pone.0023534

Prohaska SJ, Stadler PF, Krakauer DC (2010) Innovation in gene regulation: the case of chromatin computation. J Theor Biol 265(1):27–44. https://doi.org/10.1016/j.jtbi.2010.03.011

Bryant B (2012) Chromatin computation. PLoS ONE 7(5):e35703. https://doi.org/10.1371/journal.pone.0035703

Hauser H, Ijspeert AJ, Füchslin RM, Pfeifer R, Maass W (2012) Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 105(5–6):355–370. https://doi.org/10.1007/s00422-012-0471-0

Pfeifer R (2006) Morphological computation: connecting brain, body, and environment. In: Ijspeert AJ, Masuzawa T, Kusumoto S (eds) Biologically inspired approaches to advanced information technology. Springer, Berlin, Heidelberg, pp 2–3

Cheney N, Clune J, Lipson H (2014) Evolved electrophysiological soft robots. ALIFE 14:222–229. https://doi.org/10.1162/978-0-262-32621-6-ch037

Walker K, Hauser H (2021) Evolution of morphology through sculpting in a voxel based robot. In: Proceedings of the Fifteenth International Conference on the Synthesis and Simulation of Living Systems (ALIFE XV) (Prague, Czech Republic). MIT Press, Cambridge, MA. pp. 27. https://doi.org/10.1162/isal_a_00418

Corucci F, Cheney N, Lipson H, Laschi C, Bongard JC (2015) Material properties affect evolution’s ability to exploit morphological computation in growing soft-bodied creatures. In: Proceedings of the Fifteenth International Conference on the Synthesis and Simulation of Living Systems (ALIFE XV) (Cancun, Mexico). MIT Press: Cambridge, MA. pp. 234–241. https://doi.org/10.1162/978-0-262-33936-0-ch043

Pfeifer R, Iida F, Bongard J (2005) New robotics: design principles for intelligent systems. Artif Life 11(1–2):99–120. https://doi.org/10.1162/1064546053279017

Newman SA (2022) Form, Function, Agency: Sources of Natural Purpose in Animal Evolution. In: Corning PA, Kauffman SA, Noble D, Shapiro J, Vane-Wright R (eds), Evolution ‘on Purpose’: Teleonomy in Living Systems MIT Press: Cambridge, MA. pp. 199–220

Moczek AP (2022) When the end modifies its means: the origins of novelty and the evolution of innovation. Biol J Linn Soc. https://doi.org/10.1093/biolinnean/blac061

Cooke J (1981) Scale of body pattern adjusts to available cell number in amphibian embryos. Nature 290(5809):775–778. https://doi.org/10.1038/290775a0

Cooke J (1979) Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. I: The cell cycle during new pattern formation in response to implanted organisers. J Embryol Exp Morphol 51:165–182. https://doi.org/10.1242/dev.51.1.165

McDowell G, Rajadurai S, Levin M (2016) From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 371(1710):20150409. https://doi.org/10.1098/rstb.2015.0409

Žliobaitė I, Stenseth NC (2016) Improving adaptation through evolution and learning: a response to Watson and Szathmáry. Trends Ecol Evol 31(12):892–893. https://doi.org/10.1016/j.tree.2016.10.007

Kanaan AF, Piedade AP (2022) Electro-responsive polymer-based platforms for electrostimulation of cells. Mater Adv 3(5):2337–2353. https://doi.org/10.1039/d1ma01012c

Hamood AW, Marder E (2014) Animal-to-animal variability in neuromodulation and circuit function. Cold Spring Harb Symp Quant Biol 79:21–28. https://doi.org/10.1101/sqb.2014.79.024828

Shull PB, Damian DD (2015) Haptic wearables as sensory replacement, sensory augmentation and trainer - a review. J Neuroeng Rehabil 12:59. https://doi.org/10.1186/s12984-015-0055-z

Sampaio E, Maris S, Bach-y-Rita P (2001) Brain plasticity: “visual” acuity of blind persons via the tongue. Brain Res 908(2):204–207. https://doi.org/10.1016/s0006-8993(01)02667-1

Lebedev MA, Nicolelis MA (2011) Toward a whole-body neuroprosthetic. Prog Brain Res 194:47–60. https://doi.org/10.1016/B978-0-444-53815-4.00018-2

Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010) Action and behavior: a free-energy formulation. Biol Cybern 102(3):227–260. https://doi.org/10.1007/s00422-010-0364-z

Friston K (2013) Life as we know it. J R Soc Interface 10(86):20130475. https://doi.org/10.1098/rsif.2013.0475

Friston K, Levin M, Sengupta B, Pezzulo G (2015) Knowing one’s place: a free-energy approach to pattern regulation. J R Soc Interface 12(105):20141383. https://doi.org/10.1098/rsif.2014.1383

Tang Y, Ha D (2021) The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning. arXiv. arXiv:2109.02869v2. https://doi.org/10.48550/arXiv.2109.02869. Accessed 10 April 2023

Kirchhoff M, Parr T, Palacios E, Friston K, Kiverstein J (2018) The Markov blankets of life: autonomy, active inference and the free energy principle. J R Soc Interface 15(138):20170792. https://doi.org/10.1098/rsif.2017.0792

Allen M, Friston KJ (2018) From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synthese 195(6):2459–2482. https://doi.org/10.1007/s11229-016-1288-5

Chernet B, Levin M (2013) Endogenous voltage potentials and the microenvironment: bioelectric signals that reveal, induce and normalize cancer. J Clin Exp Oncol Suppl 1:S1-002. https://doi.org/10.4172/2324-9110.S1-002

Oviedo NJ, Beane WS (2009) Regeneration: the origin of cancer or a possible cure? Semin Cell Dev Biol 20(5):557–564. https://doi.org/10.1016/j.semcdb.2009.04.005

Levin M, Pietak AM, Bischof J (2019) Planarian regeneration as a model of anatomical homeostasis: recent progress in biophysical and computational approaches. Semin Cell Dev Biol 87:125–144. https://doi.org/10.1016/j.semcdb.2018.04.003

Shreesha L, Levin M (2023) Cellular competency during development alters evolutionary dynamics in an artificial embryogeny model. Entropy 25(1):131. https://doi.org/10.3390/e25010131

McShea DW (2002) A complexity drain on cells in the evolution of multicellularity. Evolution 56(3):441–452. https://doi.org/10.1111/j.0014-3820.2002.tb01357.x

Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution 50(3):967–976. https://doi.org/10.1111/j.1558-5646.1996.tb02339.x

Needham J (1933) On the dissociability of the fundamental processes in ontogenesis. Biol Rev Biol P Camb. 8(2):180–223. https://doi.org/10.1111/j.1469-185X.1933.tb01153.x

Raff RA, Kaufman TC (1991) Embryos, genes and evolution: the developmental-genetic basis of evolutionary change. Indiana University Press, Bloomington

Gould SJ (1977) Ontogeny and phylogeny. Belknap Press, An Imprint of Harvard University Press, Cambridge

Paaby AB, Gibson G (2016) Cryptic genetic variation in evolutionary developmental genetics. Biology 5(2):28. https://doi.org/10.3390/biology5020028

Manicka S, Johnson K, Levin M, Murrugarra D (2023) The nonlinearity of regulation in biological networks. NPJ Syst Biol Appl 9(1):10. https://doi.org/10.1038/s41540-023-00273-w

Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169(7):1177–1186. https://doi.org/10.1016/j.cell.2017.05.038

Budnikova M, Habig JW, Lobo D, Cornia N, Levin M, Andersen T (2014) Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search. BMC Bioinform 15:178. https://doi.org/10.1186/1471-2105-15-178

Krakauer D (2015) Cryptographic Nature. arXiv. arXiv:1505.01744v1. https://doi.org/10.48550/arXiv.1505.01744. Accessed 10 April 2023

Witkowski O, Ikegami T (2019) How to make swarms open-ended? Evolving collective intelligence through a constricted exploration of adjacent possibles. Artif Life 25(2):178–197. https://doi.org/10.1162/artl_a_00288

Matsushita Y, Kaneko K (2020) Homeorhesis in Waddington’s landscape by epigenetic feedback regulation. Phy Rev Res. 2(2):023083. https://doi.org/10.1103/PhysRevResearch.2.023083

Müller GB, Newman SA (1999) Generation, integration, automony: three steps in the evolution of homology. In: Bock GK, Cardew G (eds) Novartis found symposium on homology. John Wiley & Sons, Chichester, pp 65–79

Turing AM (1950) Computing machinery and intelligence. Mind 59(236):433–460

Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37–72. https://doi.org/10.1098/rstb.1952.0012

Lutz H (1949) Sur la production experimentale de la polyembryonie et de la monstruosite double chez les oiseaux. Arch Anat Microsc Morphol Exp 38:79–144

Keim NC, Paulsen JD, Zeravcic Z, Sastry S, Nagel SR (2019) Memory formation in matter. Rev Mod Phys 91(3):035002. https://doi.org/10.1103/RevModPhys.91.035002

Silva-Dias L, Lopez-Castillo A (2022) Morphogenesis in synthetic chemical cells. J Phys Chem Lett 13(1):296–301. https://doi.org/10.1021/acs.jpclett.1c03573

Meredith CH, Moerman PG, Groenewold J, Chiu YJ, Kegel WK, van Blaaderen A, Zarzar LD (2020) Predator-prey interactions between droplets driven by non-reciprocal oil exchange. Nat Chem 12(12):1136–1142. https://doi.org/10.1038/s41557-020-00575-0

Hanczyc MM, Caschera F, Rasmussen S (2011) Models of minimal physical intelligence. Procedia Computer Science 7:275–277. https://doi.org/10.1016/j.procs.2011.09.058

Kriegman S, Nasab AM, Shah D, Steele H, Branin G, Levin M, Bongard J, Kramer-Bottiglio R (2020) Scalable sim-to-real transfer of soft robot designs. In: Proceedings of the 3rd IEEE International Conference on Soft Robotics (RoboSoft 2020) (New Haven, CT). IEEE: New York, NY. pp. 359–366. https://doi.org/10.1109/RoboSoft48309.2020.9116004

Vandesompele A, Urbain G, Mahmud H, Wyffels F, Dambre J (2019) Body randomization reduces the sim-to-real gap for compliant quadruped locomotion. Front Neurorobot 13:9. https://doi.org/10.3389/fnbot.2019.00009

Csermely P, Kunsic N, Mendik P, Kerestély M, Faragó T, Veres DV, Tompa P (2020) Learning of signaling networks: molecular mechanisms. Trends Biochem Sci 45(4):284–294. https://doi.org/10.1016/j.tibs.2019.12.005

Szilágyi A, Szabó P, Santos M, Szathmáry E (2020) Phenotypes to remember: evolutionary developmental memory capacity and robustness. PLoS Comput Biol 16(11):e1008425. https://doi.org/10.1371/journal.pcbi.1008425

Bédécarrats A, Chen S, Pearce K, Cai D, Glanzman DL (2018) RNA from trained aplysia can induce an epigenetic engram for long-term sensitization in untrained aplysia. eNeuro. 5(3):e0038-18.2018. https://doi.org/10.1523/ENEURO.0038-18.2018

Queenan BN, Ryan TJ, Gazzaniga MS, Gallistel CR (2017) On the research of time past: the hunt for the substrate of memory. Ann N Y Acad Sci 1396(1):108–125. https://doi.org/10.1111/nyas.13348

McConnell JV (1967) The modern search for the engram. In: McConnell JV (ed) A manual of psychological experimentation on planarians, 2nd ed. Journal of Biological Psychology: Ann Arbour. pp. 1–9

Hepper PG, Waldman B (1992) Embryonic olfactory learning in frogs. Q J Exp Psychol B 44(3–4):179–197. https://doi.org/10.1080/02724999208250611

Fernando CT, Liekens AM, Bingle LE, Beck C, Lenser T, Stekel DJ, Rowe JE (2009) Molecular circuits for associative learning in single-celled organisms. J R Soc Interface 6(34):463–469. https://doi.org/10.1098/rsif.2008.0344

Manicka S, Levin M (2019) The Cognitive Lens: a primer on conceptual tools for analysing information processing in developmental and regenerative morphogenesis. Philos Trans R Soc Lond B Biol Sci 374(1774):20180369. https://doi.org/10.1098/rstb.2018.0369

Wagner A (2014) Arrival of the fittest: solving evolution’s greatest puzzle. Current, New York

Wagner A, Rosen W (2014) Spaces of the possible: universal Darwinism and the wall between technological and biological innovation. J R Soc Interface 11(97):20131190. https://doi.org/10.1098/rsif.2013.1190

Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford, New York

Szathmáry E (2015) Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci U S A 112(33):10104–10111. https://doi.org/10.1073/pnas.1421398112

Dewan EM (1976) Consciousness as an emergent causal agent in the context of control system theory. In: Globus G, Maxwell G, Savodnik I (eds) Consciousness and the brain: a scientific and philosophical inquiry. Plenum Press, New York, pp 181–198

Kriegman S, Nasab AMA, Blackiston D, Steele H, Levin M, Kramer-Bottiglio R, Bongard J (2021) Scale invariant robot behavior with fractals. In: Proceedings of Robotics: Science and Systems (RSS 2021) (held virtually). https://doi.org/10.15607/RSS.2021.XVII.059

Karve S, Wagner A (2022) Multiple novel traits without immediate benefits originate in bacteria evolving on single antibiotics. Mol Biol Evol 39(1):msab341. https://doi.org/10.1093/molbev/msab341

Raman K, Wagner A (2011) The evolvability of programmable hardware. J R Soc Interface 8(55):269–281. https://doi.org/10.1098/rsif.2010.0212

Wagner A (2011) The molecular origins of evolutionary innovations. Trends Genet 27(10):397–410. https://doi.org/10.1016/j.tig.2011.06.002

Beloussov LV, Grabovsky VI (2007) Information about a form (on the dynamic laws of morphogenesis). Biosystems 87(2–3):204–214. https://doi.org/10.1016/j.biosystems.2006.09.015

Shmulevich I, Kauffman SA (2004) Activities and sensitivities in boolean network models. Phys Rev Lett 93(4):048701. https://doi.org/10.1103/PhysRevLett.93.048701

Newman SA (2017) Inherency. In: de la Nuno Rosa L, Müller G (eds) Evolutionary developmental biology: a reference guide. Springer International Publishing, Cham, pp 1–12

Ramstead MJD, Constant A, Badcock PB, Friston KJ (2019) Variational ecology and the physics of sentient systems. Phys Life Rev 31:188–205. https://doi.org/10.1016/j.plrev.2018.12.002

Badcock PB, Friston KJ, Ramstead MJD, Ploeger A, Hohwy J (2019) The hierarchically mechanistic mind: an evolutionary systems theory of the human brain, cognition, and behavior. Cogn Affect Behav Neurosci 19(6):1319–1351. https://doi.org/10.3758/s13415-019-00721-3

Luo X, Song R, Moreno DF, Ryu HY, Hochstrasser M, Acar M (2020) Epigenetic mechanisms contribute to evolutionary adaptation of gene network activity under environmental selection. Cell Rep 33(4):108306. https://doi.org/10.1016/j.celrep.2020.108306

Torday JS, Miller WB (2016) Phenotype as agent for epigenetic inheritance. Biology 5(3):30. https://doi.org/10.3390/biology5030030

Frank SA (2019) Evolutionary design of regulatory control. II. Robust error-correcting feedback increases genetic and phenotypic variability. J Theor Biol 468:72–81. https://doi.org/10.1016/j.jtbi.2019.02.012

Chen BS, Hsu CY, Liou JJ (2011) Robust design of biological circuits: evolutionary systems biology approach. J Biomed Biotechnol 2011:304236. https://doi.org/10.1155/2011/304236

Miettinen K (1999) Evolutionary algorithms in engineering and computer science : recent advances in genetic algorithms, evolution strategies, evolutionary programming, genetic programming, and industrial applications. Wiley, Chichester, New York

Fields C, Levin M (2020) Does evolution have a target morphology ? Organisms. J Biol Sci 4(1):57–76. https://doi.org/10.13133/2532-5876/16961

Livnat A, Papadimitriou C (2016) Evolution and learning: used together, fused together. A response to Watson and Szathmáry. Trends Ecol Evol 31(12):894–896. https://doi.org/10.1016/j.tree.2016.10.004

Friston KJ, Wiese W, Hobson JA (2020) Sentience and the origins of consciousness: from cartesian duality to Markovian Monism. Entropy 22(5):516. https://doi.org/10.3390/e22050516

Levin M, Dennett DC, Cognition all the way down. Aeon Essays. 2020.

Calvo P, Baluška F (2015) Conditions for minimal intelligence across eukaryota: a cognitive science perspective. Front Psychol 6:1329. https://doi.org/10.3389/fpsyg.2015.01329

Cervera J, Manzanares JA, Mafe S, Levin M (2019) Synchronization of bioelectric oscillations in networks of nonexcitable cells: from single-cell to multicellular states. J Phys Chem B 123(18):3924–3934. https://doi.org/10.1021/acs.jpcb.9b01717

Gardner M (1970) Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life.” Sci Am 223:120–123. https://doi.org/10.1038/scientificamerican1070-120

Pickover CA (1990) Computers, pattern, chaos, and beauty: graphics from an unseen world. St. Martin’s Press, New York

Gare A (2017) Chreods, homeorhesis and biofields: finding the right path for science through Daoism. Prog Biophys Mol Biol 131:61–91. https://doi.org/10.1016/j.pbiomolbio.2017.08.010

Palacios-Prado N, Bukauskas FF (2009) Heterotypic gap junction channels as voltage-sensitive valves for intercellular signaling. Proc Natl Acad Sci U S A 106(35):14855–14860. https://doi.org/10.1073/pnas.0901923106

Rea AC, Vandenberg LN, Ball RE, Snouffer AA, Hudson AG, Zhu Y, McLain DE, Johnston LL, Lauderdale JD, Levin M, Dore TM (2013) Light-activated serotonin for exploring its action in biological systems. Chem Biol 20(12):1536–1546. https://doi.org/10.1016/j.chembiol.2013.11.005

Levin M, Buznikov GA, Lauder JM (2006) Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci 28(3):171–185. https://doi.org/10.1159/000091915

Levin M (2014) Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 592(11):2295–2305. https://doi.org/10.1113/jphysiol.2014.271940

Mathews J, Levin M (2018) The body electric 2.0: recent advances in developmental bioelectricity for regenerative and synthetic bioengineering. Curr Opin Biotechnol 52:134–144. https://doi.org/10.1016/j.copbio.2018.03.008

Yates FE (1994) Order and complexity in dynamical systems: homeodynamics as a generalized mechanics for biology. Math Comput Model 19(6–8):49–74. https://doi.org/10.1016/0895-7177(94)90189-9

Manicka S, Pai VP, Levin M (2023) Information integration during bioelectric regulation of morphogenesis in the embryonic frog brain. bioRxiv. https://doi.org/10.1101/2023.01.08.523164

Manicka S, Levin M (2022) Minimal developmental computation: a causal network approach to understand morphogenetic pattern formation. Entropy 24(1):107. https://doi.org/10.3390/e24010107

Manicka S, Levin M (2019) Modeling somatic computation with non-neural bioelectric networks. Sci Rep 9(1):18612. https://doi.org/10.1038/s41598-019-54859-8

Riol A, Cervera J, Levin M, Mafe S (2021) Cell systems bioelectricity: how different intercellular gap junctions could regionalize a multicellular aggregate. Cancers 13(21):5300. https://doi.org/10.3390/cancers13215300

Cervera J, Levin M, Mafe S (2020) Bioelectrical coupling of single-cell states in multicellular systems. J Phys Chem Lett 11(9):3234–3241. https://doi.org/10.1021/acs.jpclett.0c00641

Cervera J, Pai VP, Levin M, Mafe S (2019) From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: electrical potentials as distributed controllers. Prog Biophys Mol Biol 149:39–53. https://doi.org/10.1016/j.pbiomolbio.2019.06.004

Chernet BT, Levin M (2013) Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis Model Mech 6(3):595–607. https://doi.org/10.1242/dmm.010835