Darboux transformations for a system of coupled discrete Schrödinger equations

Physics of Atomic Nuclei - Tập 65 - Trang 1553-1559 - 2002
A. A. Suzko1,2
1Institute of Radiation Physics and Chemistry Problems, Byelorussian Academy of Sciences, Minsk, Belarus
2Joint Institute for Nuclear Research, Dubna, Moscow oblast, Russia

Tóm tắt

Darboux transformations and a factorization procedure are presented for a system of coupled finite-difference Schrödinger equations. The conformity between generalized Darboux transformations and the factorization method is established. Factorization chains and consequences of Darboux transformations are obtained for a system of coupled discrete Schrödinger equations. The proposed approach permits constructing a new series of potential matrices with known spectral characteristics for which coupled-channel discrete Schrödinger equations have exact solutions.

Tài liệu tham khảo

G. Darboux, C. R. Acad. Sci. 94, 1456 (1882). E. Schrödinger, Proc. R. Ir. Acad. A, Math. Phys. Sci. 46, 9, 183 (1940). L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951). E. Witten, Nucl. Phys. B 188, 513 (1981). V. Bargmann, Phys. Rev. 75, 301 (1949); Rev. Mod. Phys. 21, 488 (1949). M. M. Nieto, Phys. Lett. B 145B, 208 (1984); C. V. Sukumar, J. Phys. A 18, 2937 (1985). B. F. Samsonov, J. Phys. A 28, 6989 (1995); J. Math. Phys. (N.Y.) 39, 967 (1998). A. A. Suzko, Int. J. Mod. Phys. A 12, 277 (1997). A. A. Suzko, Phys. Scr. 31, 447 (1985). A. A. Suzko, Phys. Scr. 34, 5 (1986). A. A. Suzko, Fiz. Élem. Chastits At. Yadra 24, 1133 (1993) [Phys. Part. Nucl. 24, 485 (1993)]; Lecture Notes in Physics, Ed. by H. von Geramb (Springer-Verlag, Berlin, 1993), Vol. 427, p. 67. K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer-Verlag, Berlin, 1989, 2nd ed.; Mir, Moscow, 1980, translation of 1st ed.). Lecture Notes in Physics (Springer-Verlag, Berlin, 1993), Vol. 427. Lecture Notes in Physics (Springer-Verlag, Berlin, 1997), Vol. 488. B. N. Zakhariev and A. A. Suzko, Direct and Inverse Problems. Potentials in Quantum Scattering (Springer-Verlag, Berlin, 1990). S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: the Inverse Scattering Method (Nauka, Moscow, 1980; Consultants Bureau, New York, 1984). F. Calogero and A. Degasperis, Spectral Transformation and Solitons (North-Holland, Amsterdam, 1982; Mir, Moscow, 1985). V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer-Verlag, Berlin, 1991), Springer Series in Nonlinear Dynamics. V. B. Matveev and M. A. Salle, Lett. Math. Phys. 3, 425 (1979). Z. S. Agranovich and V. A. Marchenko, Inversion Problem of Scattering Theory (Kharkov State Univ. Press, Kharkov, 1960; Gordon and Breach, New York, 1963). M. Humi, J. Phys. A 18, 1085 (1985). A. A. Suz'ko, Yad. Fiz. 55, 2446 (1992) [Sov. J. Nucl. Phys. 55, 1359 (1992)]. J. M. Sparenberg and D. Baye, Phys. Rev. Lett. 79, 3802 (1997). Yu. M. Berezanskii, Expansion in Eigenfunctions of Self-Adjoint Operators (Naukova Dumka, Kiev, 1965; American Mathematical Society, Providence, 1968). V. Spiridonov and A. Zhedanov, Methods Appl. Anal. 2, 369 (1995); J. Phys. A 30, 8727 (1997). K. M. Case and M. Kac, J. Math. Phys. (N.Y.) 14, 594 (1973); K. M. Case, J. Math. Phys. (N.Y.) 15, 2166 (1974). F. Gesztezy and B. Simon, in Proceedings of the International Conference “Mathematical Results in Quantum Mechanics,” Prague, 1998. T. S. Chihara, Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978); G. Szegö, Orthogonal Polynomials (American Mathematical Society, New York, 1959, 4th ed.; Inostrannaya Literatura, Moscow, 1975). Ya. I. Geronimus, Izv. Akad. Nauk SSSR, Ser. Fiz. 4, 215 (1940). A. A. Suzko, in Proceedings of the Seminar “Symmetries and Integrable Systems,” Dubna, 1999, Ed. by A. N. Sissakian, p. 258; Preprint ESI-665 (1999). V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 8, 226 (1974); 13, 166 (1979).