Biến đổi Darboux, giải pháp soliton của phương trình Korteweg–de Vries phi địa phương với hệ số biến thiên

Springer Science and Business Media LLC - Tập 41 - Trang 1-10 - 2022
Feng Zhang1, Yuru Hu1, Xiangpeng Xin1, Hanze Liu1
1School of Mathematical Sciences, Liaocheng University, Liaocheng, People’s Republic of China

Tóm tắt

Trong bài báo này, phương trình Korteweg–de Vries phi địa phương đã được mở rộng thành dạng hệ số biến thiên dựa trên hệ thống AKNS. Biến đổi Darboux của phương trình Korteweg–de Vries phi địa phương với hệ số biến thiên được xây dựng. Một số nghiệm chính xác được thu được dựa trên biến đổi Darboux sử dụng nghiệm hạt giống bằng không và nghiệm hạt giống khác không, bao gồm nghiệm soliton đơn, nghiệm kink, nghiệm sóng thở và nghiệm sóng rogue. Kết quả cho thấy chúng tôi có thể thu được một số nghiệm tổng quát hơn so với dạng hệ số không đổi của nó.

Từ khóa

#phương trình Korteweg–de Vries #biến đổi Darboux #nghiệm soliton #hệ số biến thiên #sóng rogue

Tài liệu tham khảo

Ablowitz MJ, Musslimani ZH (2013) Integrable nonlocal nonlinear Schrödinger equation. Phys Rev Lett 110:064105 Ablowitz MJ, Musslimani ZH (2016) Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29:915 Ablowitz MJ, Kaup DJ, Newell AC, Segur H (1974) The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math 53:249 Anderson IM, Fels ME (2016) Bäcklund transformations for Darboux integrable differential systems: examples and applications. J Geom Phys 102:1–31 Antonelli P, Marcati P, Zheng H (2019) Stability for the quadratic derivative nonlinear Schrödinger equation and applications to the Korteweg–Kirchhoff type Euler equations for quantum hydrodynamics. Nonlinear Anal 186:209–218 Bashan A (2020) An effective approximation to the dispersive soliton solutions of the coupled KdV equation via combination of two efficient methods. Comput Appl Math 39:80 Congy T, Ei GA, Hoefer MA, Shearer M (2019) Nonlinear Schrödinger equations and the universal description of dispersive shock wave structure. Stud Appl Math 142:241–268 Coz SL, Wang Z (2021) Stability of the multi-solitons of the modified Korteweg–de Vries equation. Nonlinearity 34:7109 Ding CC, Gao YT, Deng GF, Wang D (2020) Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma. Chaos Solitons Fractals 133:109580 Ji JL, Zhu ZN (2017) On a nonlocal modified Korteweg–de Vries equation: integrability, Darboux transformation and soliton solutions. Commun Nonlinear Sci Numer Simul 42:699–708 Lan ZZ (2020) Rogue wave solutions for a higher-order nonlinear Schrödinger equation in an optical fiber. Appl Math Lett 107:106382 Li BQ, Ma YL (2020) Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrodinger equation. Appl Math Comput 386:125469 Li M, Zhang Y, Ye R, Lou Y (2021) Exact solutions of the nonlocal Gerdjikov–Ivanov equation. Commun Theor Phys 73:105005 Liu W, Zheng XX, Li XL (2018) Bright and dark soliton solutions to the partial reverse space-time nonlocal Mel’nikov equation. Nonlinear Dyn 94:2177–2189 Liu YQ, Wen XY, Wang DS (2019) The N-soliton solution and localized wave interaction solutions of the (2 + 1)-dimensional generalized Hirota–Satsuma–Ito equation. Comput Math Appl 77:947–966 Liu FY, Gao YT, Yu X, Hu L, Wu XH (2021) Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Chaos Soliton Fractals 152:111355 Namjoo M, Zibaei S (2018) Numerical solutions of FitzHugh–Nagumo equation by exact finite-difference and NSFD schemes. Comput Appl Math 37:1395–1411 Nandy S, Barthakur A (2019) Pairwise three soliton interactions, soliton logic gates in coupled nonlinear Schrödinger equation with variable coefficients. Commun Nonlinear Sci Numer Simul 69:370–385 Osman MS (2018) On multi-soliton solutions for the (2 + 1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide. Comput Math Appl 75:1–6 Ren RC, Zhang SL (2020) Invariant analysis, conservation laws, and some exact solutions for (2 + 1)-dimension fractional long-wave dispersive system. Comput Appl Math 39:249 Song JY, Hao HQ (2019) Darboux transformation and explicit solutions for the (2 + 1)-dimensional nonlocal nonlinear Schrödinger–Maxwell–Bloch system. Appl Math Lett 96:166–171 Wang XF, Cheng H (2021) Solitary wave solution and a linear mass-conservative difference scheme for the generalized Korteweg–de Vries–Kawahara equation. Comput Appl Math 40:273 Wang X, Wang L (2018) Darboux transformation and nonautonomous solitons for a modified Kadomtsev–Petviashvili equation with variable coefficients. Comput Math Appl 75:4201–4213 Wang H, Tian SF, Zhang TT, Chen Y, Fang Y (2019) General lump solutions, lumpoff solutions, and rogue wave solutions with predictability for the (2 + 1)-dimensional Korteweg–de Vries equation. Comput Appl Math 38:164 Wazwaz AM (2013) On the nonlocal Boussinesq equation: multiple-soliton solutions. Appl Math Lett 26:1094–1098 Xin XP, Liu YT, Xia YR, Liu HZ (2021) Integrability, Darboux transformation and exact solutions for nonlocal couplings of AKNS equations. Appl Math Lett 119:107209 Zhang XE, Chen Y, Zhang Y (2017) Breather, lump and X soliton solutions to nonlocal KP equation. Comput Math Appl 74:2341–2347 Zhang QY, Zhang Y, Ye R (2019) Exact solutions of nonlocal Fokas–Lenells equation. Appl Math Lett 98:336–343 Zhou ZX (2018) Darboux transformations and global explicit solutions for nonlocal Davey–Stewartson I equation. Study Appl Math 141:186–204