Darboux-integrable discrete systems

Springer Science and Business Media LLC - Tập 156 - Trang 1142-1153 - 2008
V. L. Vereshchagin1
1Institute for Mathematics and Computing Center, Urals Science Center, RAS, Ufa, Russia

Tóm tắt

We extend Laplace’s cascade method to systems of discrete “hyperbolic” equations of the form ui+1,j+1 = f(ui+1,j, ui,j+1 , ui,j), where uij is a member of a sequence of unknown vectors, i, j ∊ ℤ. We introduce the notion of a generalized Laplace invariant and the associated property of the system being “Liouville.” We prove several statements on the well-definedness of the generalized invariant and on its use in the search for solutions and integrals of the system. We give examples of discrete Liouville-type systems.

Tài liệu tham khảo

G. Darboux, “Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal,” in: Déformation infiniment petite et représentation sphérique, Vol. 4, Gautier-Villars, Paris (1896), pp. 353–548. I. M. Anderson and N. Kamran, Duke Math. J., 87, 265–319 (1997). A. V. Zhiber, V. V. Sokolov, and S. Ya. Startsev, Dokl. Math., 52, No. 1, 128–130 (1995). A. V. Zhiber and V. V. Sokolov, Laplace’s Method of Cascade Integration and Darboux-Integrable Equations [in Russian], RITs BashGU, Ufa (1996). V. E. Adler and S. Ya. Startsev, Theor. Math. Phys., 121, 1484–1495 (1999). R. Hirota, J. Phys. Soc. Japan, 50, 3785–3791 (1981). D. Levi, L. Pilloni, and P. M. Santini, J. Phys. A, 14, 1567–1575 (1981). R. S. Ward, Phys. Lett. A, 199, 45–48 (1995). R. Hirota, J. Phys. Soc. Japan, 46, 312–319 (1979). A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys, 56, 61–101 (2001). A. M. Gur’eva, “Laplace’s method of cascade integration and nonlinear hyperbolic systems of equations,” Candidate’s dissertation phys.-math. sci., UGATU, Ufa (2005) [in Russian]. A. V. Zhiber, V. V. Sokolov, and S. Ya. Startsev, “Nonlinear hyperbolic partial differential systems of the Liouville type,” in: Intl. Conf. “Tikhonov and Contemporary Mathematics” [in Russian] (Moscow, Russia, June 19–25, 2006), Vol. 1 (2006), pp. 1–2. A. M. Guryeva and A. V. Zhiber, Theor. Math. Phys., 138, 338–355 (2004). I. T. Habibullin, Theor. Math. Phys., 146, 170–182 (2006).