Dan Burghelea: “New Topological Invariants for Real- and Angle-Valued Maps”
Tóm tắt
Từ khóa
Tài liệu tham khảo
Burghelea, D.: Linear relations, monodromy and Jordan cells of a circle valued map. arXiv:1501.02486
Burghelea, D.: A refinement of Betti numbers and homology in the presence of a continuous function II (the case of an angle valued map). arXiv:1603.01861
Burghelea, D.: A refinement of Betti numbers and homology in the presence of a continuous function, I. Algebraic Geom. Topol. 17(4), 2051–2080 (2017)
Burghelea, D., Dey, T.: Topological persistence for circle-valued maps. Discrete Comput. Geom. 50(1), 69–98 (2013)
Burghelea, D., Haller, S.: Topology of angle valued maps, bar codes and Jordan blocks. arXiv:1303.4328
Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. In: Proceedings of the 25th ACM Symposium on Computational Geometry, pp. 247–256 (2009)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)