Dan Burghelea: “New Topological Invariants for Real- and Angle-Valued Maps”

Jahresbericht der Deutschen Mathematiker-Vereinigung - Tập 121 Số 1 - Trang 63-67 - 2019
Michael Usher1
1Department of Mathematics, University of Georgia, Athens, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burghelea, D.: Linear relations, monodromy and Jordan cells of a circle valued map. arXiv:1501.02486

Burghelea, D.: A refinement of Betti numbers and homology in the presence of a continuous function II (the case of an angle valued map). arXiv:1603.01861

Burghelea, D.: A refinement of Betti numbers and homology in the presence of a continuous function, I. Algebraic Geom. Topol. 17(4), 2051–2080 (2017)

Burghelea, D., Dey, T.: Topological persistence for circle-valued maps. Discrete Comput. Geom. 50(1), 69–98 (2013)

Burghelea, D., Haller, S.: Topology of angle valued maps, bar codes and Jordan blocks. arXiv:1303.4328

Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. In: Proceedings of the 25th ACM Symposium on Computational Geometry, pp. 247–256 (2009)

Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)

Usher, M., Zhang, J.: Persistent homology and Floer–Novikov theory. Geom. Topol. 20(6), 3333–3430 (2016)