Daily detection and quantification of methane leaks using Sentinel-3: a tiered satellite observation approach with Sentinel-2 and Sentinel-5p

Remote Sensing of Environment - Tập 296 - Trang 113716 - 2023
Sudhanshu Pandey1,2, Maarten van Nistelrooij1, Joannes D. Maasakkers1, Pratik Sutar1, Sander Houweling3, Daniel J. Varon4, Paul Tol1, David Gains5, John Worden2, Ilse Aben1,3
1SRON, Netherlands Institute for Space Research, Leiden, The Netherlands
2Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, USA
3Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
4School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
5GHGSat, Inc., Montréal H2W 1Y5, Canada

Tài liệu tham khảo

Borchardt, 2021, Detection and quantification of CH4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data, Atmos. Meas. Tech., 14, 1267, 10.5194/amt-14-1267-2021 Brandt, 2016, Methane leaks from natural gas systems follow extreme distributions, Environ. Sci. Technol., 50, 12512, 10.1021/acs.est.6b04303 CCAC, 2022 Cusworth, 2021, Multisatellite imaging of a gas well blowout enables quantification of total methane emissions, Geophys. Res. Lett., 48, 10.1029/2020GL090864 Cusworth, 2022, Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the United States, Proc. Natl. Acad. Sci. U. S. A., 119, 1, 10.1073/pnas.2202338119 Donlon, 2012, The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission, Remote Sens. Environ., 120, 37, 10.1016/j.rse.2011.07.024 Duren, 2019, E.: California’s methane super-emitters, Nature, 575, 180, 10.1038/s41586-019-1720-3 Ehret, 2022, Global Tracking and Quantification of Oil and Gas Methane Emissions from Recurrent Sentinel-2 Imagery, Environ. Sci. Technol., 56, 10517, 10.1021/acs.est.1c08575 Frankenberg, 2016, O.: Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region, P, Natl. Acad. Sci. USA, 113, 9734, 10.1073/pnas.1605617113 Gorroño, 2023, Understanding the potential of Sentinel-2 for monitoring methane point emissions, Atmos. Meas. Tech., 16, 89, 10.5194/amt-16-89-2023 Guanter, 2021, Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer, Remote Sens. Environ., 265, 10.1016/j.rse.2021.112671 Hersbach, 2020, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999, 10.1002/qj.3803 IPCC, 2021 Irakulis-Loitxate, 2022, Satellites detect abatable super-emissions in one of the world’s largest methane hotspot regions, Environ. Sci. Technol., 56, 2143, 10.1021/acs.est.1c04873 Jacob, 2022, Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. Chem. Phys., 9617–9646 Jervis, 2021, The GHGSat-D imaging spectrometer, Atmos. Meas. Tech., 14, 2127, 10.5194/amt-14-2127-2021 Lauvaux, 2022, Global assessment of oil and gas methane ultra-emitters, Science, 375, 557, 10.1126/science.abj4351 Li, 2020, Global Revisit Interval Analysis of Landsat-8-9 and Sentinel-2A-2B Data for Terrestrial Monitoring, Sensors, 20, 6631, 10.3390/s20226631 Lorente, 2022, Accounting for surface reflectance spectral features in TROPOMI methane retrievals, Atmos. Meas. Tech. Discuss. Maasakkers, 2022, Reconstructing and quantifying methane emissions from the full duration of a 38-day natural gas well blowout using space-based observations, Remote Sens. Environ., 112755 Maasakkers, 2022, Using satellites to uncover large methane emissions from landfills, Sci. Adv., 8, 1, 10.1126/sciadv.abn9683 Molod, 2012 Nisbet, 2020, Methane mitigation: methods to reduce emissions, on the path to the Paris agreement, Rev. Geophys., 58, 10.1029/2019RG000675 Pandey, 2019, Satellite observations reveal extreme methane leakage from a natural gas well blowout, P, Natl. Acad. Sci. USA, 116, 26376, 10.1073/pnas.1908712116 Sadavarte, 2021, Methane emissions from superemitting coal mines in Australia quantified using TROPOMI satellite observations, Environ. Sci. Technol., 55, 16573, 10.1021/acs.est.1c03976 Sánchez-García, 2022, Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite, Atmos. Meas. Tech., 15, 1657, 10.5194/amt-15-1657-2022 Saunois, 2020, The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12, 1561, 10.5194/essd-12-1561-2020 Schuit, 2023, Automated detection and monitoring of methane super-emitters using satellite data, Atmos. Chem. Phys. Discuss., 10.5194/acp-23-9071-2023 UNEP Varon, 2018, Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes, Atmos. Meas. Tech., 11, 5673, 10.5194/amt-11-5673-2018 Varon, 2019, Satellite discovery of anomalously large methane point sources from oil/gas production, Geophys. Res. Lett., 46, 13507, 10.1029/2019GL083798 Varon, 2021, High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations, Atmos. Meas. Tech., 14, 2771, 10.5194/amt-14-2771-2021 Varon, 2022, Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations, Atmos. Chem. Phys. Discuss. Veefkind, 2012, TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 120, 70, 10.1016/j.rse.2011.09.027 Wang, 2012, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13-4, 600 Zavala-Araiza, 2017, Super-emitters in natural gas infrastructure are caused by abnormal process conditions, Nat. Commun., 8, 14012, 10.1038/ncomms14012