DNA transfer in forensic science: A review

Forensic Science International: Genetics - Tập 38 - Trang 140-166 - 2019
Roland A.H. van Oorschot1,2, Bianca Szkuta1,3, Georgina E. Meakin4,5, Bas Kokshoorn6, Mariya Goray7
1Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, 31 Forensic Drive, Macleod 3085, Australia
2School of Molecular Sciences, La Trobe University, Bundoora 3086, Australia
3School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong 3220, Australia
4UCL Centre for the Forensic Sciences, 35 Tavistock Square, London WC1H 9EZ, UK
5UCL Department of Security and Crime Science,35 Tavistock Square, London, WC1H 9EZ, UK
6Division Biological Traces, Netherlands Forensic Institute, P.O. Box 24044 2490 AA, The Hague, The Netherlands
7Biometrics Division, Victoria Police Forensic Services Department, 31 Forensic Drive, Macleod 3085, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cook, 1998, A hierarchy of propositions: deciding which level to address in casework, Sci. Justice, 38, 231, 10.1016/S1355-0306(98)72117-3

Taylor, 2018, Evaluation of forensic genetics findings given activity level propositions: a review, Forensic Sci. Int. Genet., 36, 34, 10.1016/j.fsigen.2018.06.001

Locard, 1920

Inman, 2000

Jeffreys, 1985, Hypervariable’ minisatellite’ regions in human DNA, Nature, 314, 67, 10.1038/314067a0

Gill, 1985, Forensic application of DNA `fingerprints’, Nature, 318, 577, 10.1038/318577a0

van Oorschot, 2010, Forensic trace DNA: a review, Investig. Genet., 1, 1, 10.1186/2041-2223-1-14

Børsting, 2015, Next generation sequencing and its applications in forensic genetics, Forensic Sci. Int. Genet., 18, 78, 10.1016/j.fsigen.2015.02.002

Butler, 2012

Gill, 2015, Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches - twenty years of research and development, Forensic Sci. Int. Genet., 18, 100, 10.1016/j.fsigen.2015.03.014

Butler, 2015, U.S. Initiatives to strengthen forensic science & international standards in forensic DNA, Forensic Sci. Int. Genet., 18, 4, 10.1016/j.fsigen.2015.06.008

Peerenboom, 1998, Central criminal DNA database created in Germany, Nat. Biotechnol., 16, 510, 10.1038/nbt0698-510

Hoyle, 1998, The FBI’s national DNA database, Nat. Biotechnol., 16, 987, 10.1038/3402

Mapes, 2015, DNA in the criminal justice system: the DNA success story in perspective, J. Forensic Sci., 60, 851, 10.1111/1556-4029.12779

Bond, 2008, The value of DNA material recovered from crime scenes, J. Forensic Sci., 53, 797, 10.1111/j.1556-4029.2008.00746.x

Baechler, 2016, Study of criteria influencing the success rate of DNA swabs in operational conditions: a contribution to an evidence-based approach to crime scene investigation and triage, Forensic Sci. Int. Genet., 20, 130, 10.1016/j.fsigen.2015.10.009

Walsh, 2002, The collation of forensic DNA case data into a multi-dimensional intelligence database, Sci. Justice, 42, 205, 10.1016/S1355-0306(02)71830-3

Wickenheiser, 2002, Trace DNA: a review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact, J. Forensic Sci., 47, 442, 10.1520/JFS15284J

Cardozo, 2007

Asplen, 2004

Gross, 2005, Exonerations in the United States 1989 through 2003, J. Crim. Law Criminol., 95, 523

Biesecker, 2005, DNA identifications after the 9/11 world trade center attack, Science, 310, 1122, 10.1126/science.1116608

Hartman, 2011, The contribution of DNA to the disaster victim identification (DVI) effort, Forensic Sci. Int., 205, 52, 10.1016/j.forsciint.2010.09.024

Alonso, 2005, Challenges of DNA profiling in mass disaster investigations, Croat. Med. J., 46, 540

Clayton, 1995, Identification of bodies from the scene of a mass disaster using DNA amplification of short tandem repeat (STR) loci, Forensic Sci. Int., 76, 7, 10.1016/0379-0738(95)01787-9

van Oorschot, 1997, DNA fingerprints from fingerprints, Nature, 387, 767, 10.1038/42838

Mapes, 2016, Knowledge on DNA success rates to optimize the DNA analysis process: from crime scene to laboratory, J. Forensic Sci., 61, 1055, 10.1111/1556-4029.13102

Raymond, 2004, Trace DNA: an underutilized resource or Pandora’s box? A review of the use of trace DNA analysis in the investigation of volume crime, J. Forensic Identification, 54, 668

Harbison, 2008, An analysis of the success rate of 908 trace DNA samples submitted to the Crime Sample Database Unit in New Zealand, Aust. J. Forensic Sci., 40, 49, 10.1080/00450610802050774

Taroni, 2013, Whose DNA is this? How relevant a question? (a note for forensic scientists), Forensic Sci. Int. Genet., 7, 467, 10.1016/j.fsigen.2013.03.012

Ladd, 1999, A systematic analysis of secondary DNA transfer, J. Forensic Sci., 44, 1270, 10.1520/JFS14599J

Lowe, 2002, The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces, Forensic Sci. Int., 129, 25, 10.1016/S0379-0738(02)00207-4

Phipps, 2007, The tendency of individuals to transfer DNA to handled items, Forensic Sci. Int., 168, 162, 10.1016/j.forsciint.2006.07.010

Farmen, 2008, Assessment of individual shedder status and implication for secondary DNA transfer, Forensic Sci. Int. Genet. Suppl. Ser., 1, 415, 10.1016/j.fsigss.2007.08.015

van Oorschot, 2003, Are you collecting all the available DNA from touched objects?, Int. Congr. Ser., 1239, 803, 10.1016/S0531-5131(02)00498-3

Raymond, 2009, Trace evidence characteristics of DNA: a preliminary investigation of the persistence of DNA at crime scenes, Forensic Sci. Int. Genet., 4, 26, 10.1016/j.fsigen.2009.04.002

Goray, 2010, Investigation of secondary DNA transfer of skin cells under controlled test conditions, Leg. Med., 12, 117, 10.1016/j.legalmed.2010.01.003

Goray, 2010, Secondary DNA transfer of biological substances under varying test conditions, Forensic Sci. Int. Genet., 4, 62, 10.1016/j.fsigen.2009.05.001

Meakin, 2013, DNA transfer: review and implications for casework, Forensic Sci. Int. Genet., 7, 434, 10.1016/j.fsigen.2013.03.013

Casey, 2016, A response to Meakin and Jamieson DNA transfer: review and implications for casework, Forensic Sci. Int. Genet., 21, 117, 10.1016/j.fsigen.2015.12.013

Meakin, 2016, A response to a response to Meakin and Jamieson DNA transfer: review and implications for casework, Forensic Sci. Int. Genet., 22, e5, 10.1016/j.fsigen.2016.02.010

Gill, 2014

Gill, 2016, Analysis and implications of the miscarriages of justice of Amanda Knox and Raffaele Sollecito, Forensic Sci. Int. Genet., 23, 9, 10.1016/j.fsigen.2016.02.015

Willis, 2015

Taylor, 2018, A template for constructing Bayesian networks in forensic biology cases when considering activity level propositions, Forensic Sci. Int. Genet., 33, 136, 10.1016/j.fsigen.2017.12.006

Champod, 2013, DNA transfer: informed judgment or mere guesswork?, Front. Genet., 4

Taylor, 2017, Helping to distinguish primary from secondary transfer events for trace DNA, Forensic Sci. Int. Genet., 28, 155, 10.1016/j.fsigen.2017.02.008

Goray, 2012, Evaluation of multiple transfer of DNA using mock case scenarios, Leg. Med., 14, 40, 10.1016/j.legalmed.2011.09.006

Lehmann, 2013, Following the transfer of DNA: how far can it go?, Forensic Sci. Int. Genet. Suppl. Ser., 4, e53, 10.1016/j.fsigss.2013.10.027

Buckingham, 2016, The origin of unknown source DNA from touched objects, Forensic Sci. Int. Genet., 25, 26, 10.1016/j.fsigen.2016.07.015

Meakin, 2017, Trace DNA evidence dynamics: an investigation into the deposition and persistence of directly- and indirectly-transferred DNA on regularly-used knives, Forensic Sci. Int. Genet., 29, 38, 10.1016/j.fsigen.2017.03.016

Szkuta, 2017, Transfer and persistence of DNA on the hands and the influence of activities performed, Forensic Sci. Int. Genet., 28, 10, 10.1016/j.fsigen.2017.01.006

Szkuta, 2018, Transfer and persistence of non-self DNA on hands over time: using empirical data to evaluate DNA evidence given activity level propositions, Forensic Sci. Int. Genet., 33, 84, 10.1016/j.fsigen.2017.11.017

Cale, 2016, Could secondary DNA transfer falsely place someone at the scene of a crime?, J. Forensic Sci., 61, 196, 10.1111/1556-4029.12894

Goray, 2012, DNA transfer within forensic exhibit packaging: potential for DNA loss and relocation, Forensic Sci. Int. Genet., 6, 158, 10.1016/j.fsigen.2011.03.013

Fonneløp, 2016, Contamination during criminal investigation: detecting police contamination and secondary DNA transfer from evidence bags, Forensic Sci. Int. Genet., 23, 121, 10.1016/j.fsigen.2016.04.003

Szkuta, 2017, DNA decontamination of fingerprint brushes, Forensic Sci. Int., 277, 41, 10.1016/j.forsciint.2017.05.009

Szkuta, 2015, DNA transfer by examination tools – a risk for forensic casework?, Forensic Sci. Int. Genet., 16, 246, 10.1016/j.fsigen.2015.02.004

Szkuta, 2015, Residual DNA on examination tools following use, Forensic Sci. Int. Genet. Suppl. Ser., 5, e495, 10.1016/j.fsigss.2015.09.196

Fonneløp, 2015, Secondary and subsequent DNA transfer during criminal investigation, Forensic Sci. Int. Genet., 17, 155, 10.1016/j.fsigen.2015.05.009

Bolivar, 2016, Assessing the risk of secondary transfer via fingerprint brush contamination using enhanced sensitivity DNA analysis methods, J. Forensic Sci., 61, 204, 10.1111/1556-4029.12911

van Oorschot, 2005, Beware of the possibility of fingerprinting techniques transferring DNA, J. Forensic Sci., 50, 1, 10.1520/JFS2004430

Goray, 2015, The complexities of DNA transfer during a social setting, Leg. Med., 17, 82, 10.1016/j.legalmed.2014.10.003

Fonneløp, 2017, The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario, Forensic Sci. Int. Genet., 29, 48, 10.1016/j.fsigen.2017.03.019

Rudin, 2001, The collection and preservation of physical evidence, 13

Lehmann, 2015, Following the transfer of DNA: how does the presence of background DNA affect the transfer and detection of a target source of DNA?, Forensic Sci. Int. Genet., 19, 68, 10.1016/j.fsigen.2015.05.002

Giannelli, 1974, Legal aspects of obtaining evidence for analysis by forensic techniques, J. Forensic Sci., 19, 428, 10.1520/JFS10199J

Balding, 2009, Interpreting low template DNA profiles, Forensic Sci. Int. Genet., 4, 1, 10.1016/j.fsigen.2009.03.003

Budowle, 2009, Validity of low copy number typing and applications to forensic science, Croat. Med. J., 50, 207, 10.3325/cmj.2009.50.207

Cook, 2007, The prevalence of mixed DNA profiles in fingernail samples taken from individuals in the general population, Forensic Sci. Int. Genet., 1, 62, 10.1016/j.fsigen.2006.10.009

Graham, 2008, Investigation into “normal” background DNA on adult necks: implications for DNA profiling of manual strangulation victims, J. Forensic Sci., 53, 1074, 10.1111/j.1556-4029.2008.00800.x

Graham, 2014, Defining background DNA levels found on the skin of children aged 0–5 years, Int. J. Legal Med., 128, 251, 10.1007/s00414-013-0906-8

Kokshoorn, 2018, Sharing data on DNA transfer, persistence, prevalence and recovery: arguments for harmonization and standardization, Forensic Sci. Int. Genet., 37, 260, 10.1016/j.fsigen.2018.09.006

Verdon, 2013, The influence of substrate on DNA transfer and extraction efficiency, Forensic Sci. Int. Genet., 7, 167, 10.1016/j.fsigen.2012.09.004

Daly, 2012, The transfer of touch DNA from hands to glass, fabric and wood, Forensic Sci. Int. Genet., 6, 41, 10.1016/j.fsigen.2010.12.016

Helmus, 2016, DNA transfer - a never ending story. A study on scenarios involving a second person as carrier, Int. J. Legal Med., 130, 121, 10.1007/s00414-015-1284-1

Buckingham, 2017, Transfer of picked-up DNA to cotton plates, Forensic Sci. Int. Genet. Suppl. Ser., 6, e6, 10.1016/j.fsigss.2017.09.001

Warshauer, 2012, An evaluation of the transfer of saliva-derived DNA, Int. J. Legal Med., 126, 851, 10.1007/s00414-012-0743-1

van Oorschot, 2014, DNA transfer: the role of temperature and drying time, Leg. Med., 16, 161, 10.1016/j.legalmed.2014.01.005

Laan, 2016, Morphology of drying blood pools, Forensic Sci. Int., 267, 104, 10.1016/j.forsciint.2016.08.005

Ramsthaler, 2012, Drying properties of bloodstains on common indoor surfaces, Int. J. Legal Med., 126, 739, 10.1007/s00414-012-0734-2

van Oorschot, 2014, Persistence of DNA deposited by the original user on objects after subsequent use by a second person, Forensic Sci. Int. Genet., 8, 219, 10.1016/j.fsigen.2013.10.005

Wiegand, 1997, DNA typing of epithelial cells after strangulation, Int. J. Legal Med., 110, 181, 10.1007/s004140050063

Rutty, 2002, An investigation into the transference and survivability of human DNA following simulated manual strangulation with consideration of the problem of third party contamination, Int. J. Legal Med., 116, 170, 10.1007/s00414-001-0279-2

Bright, 2004, Recovery of trace DNA and its application to DNA profiling of shoe insoles, Forensic Sci. Int., 145, 7, 10.1016/j.forsciint.2004.03.016

Petricevic, 2006, DNA profiling of trace DNA recovered from bedding, Forensic Sci. Int., 159, 21, 10.1016/j.forsciint.2005.06.004

Alessandrini, 2003, Fingerprints as evidence for a genetic profile: morphological study on fingerprints and analysis of exogenous and individual factors affecting DNA typing, J. Forensic Sci., 48, 586, 10.1520/JFS2002260

Balogh, 2003, Fingerprints from fingerprints, Int. Congr. Ser., 1239, 953, 10.1016/S0531-5131(02)00230-3

Kita, 2008, Morphological study of fragmented DNA on touched objects, Forensic Sci. Int. Genet., 3, 32, 10.1016/j.fsigen.2008.09.002

Zoppis, 2014, DNA fingerprinting secondary transfer from different skin areas: morphological and genetic studies, Forensic Sci. Int. Genet., 11, 137, 10.1016/j.fsigen.2014.03.005

Quinones, 2012, Cell free DNA as a component of forensic evidence recovered from touched surfaces, Forensic Sci. Int. Genet., 6, 26, 10.1016/j.fsigen.2011.01.004

Linacre, 2010, Generation of DNA profiles from fabrics without DNA extraction, Forensic Sci. Int. Genet., 4, 137, 10.1016/j.fsigen.2009.07.006

Vandenberg, 2006, The use of Polilight® in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests, J. Forensic Sci., 51, 361, 10.1111/j.1556-4029.2006.00065.x

Finnis, 2013, Comparison of methods for visualizing blood on dark surfaces, Sci. Justice, 53, 178, 10.1016/j.scijus.2012.09.001

Sijen, 2015, Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers, Forensic Sci. Int. Genet., 18, 21, 10.1016/j.fsigen.2014.11.015

Virkler, 2009, Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene, Forensic Sci. Int., 188, 1, 10.1016/j.forsciint.2009.02.013

Hanson, 2012, Specific and sensitive mRNA biomarkers for the identification of skin in ‘touch DNA’ evidence, Forensic Sci. Int. Genet., 6, 548, 10.1016/j.fsigen.2012.01.004

Haas, 2015, RNA/DNA co-analysis from human skin and contact traces – results of a sixth collaborative EDNAP exercise, Forensic Sci. Int. Genet., 16, 139, 10.1016/j.fsigen.2015.01.002

van den Berge, 2014, A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results, Forensic Sci. Int. Genet., 10, 40, 10.1016/j.fsigen.2014.01.006

Akutsu, 2018, Evaluation of skin- or sweat-characteristic mRNAs for inferring the human origin of touched contact traces, Leg. Med., 33, 36, 10.1016/j.legalmed.2018.05.003

Visser, 2011, mRNA-based skin identification for forensic applications, Int. J. Legal Med., 125, 253, 10.1007/s00414-010-0545-2

Schmedes, 2018, Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification, Forensic Sci. Int. Genet., 32, 50, 10.1016/j.fsigen.2017.10.004

Tims, 2010, Microbial DNA fingerprinting of human fingerprints: dynamic colonization of fingertip microflora challenges human host inferences for forensic purposes, Int. J. Legal Med., 124, 477, 10.1007/s00414-009-0352-9

van den Berge, 2016, Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios, Forensic Sci. Int. Genet., 21, 81, 10.1016/j.fsigen.2015.12.012

Lacerenza, 2016, A molecular exploration of human DNA/RNA co-extracted from the palmar surface of the hands and fingers, Forensic Sci. Int. Genet., 22, 44, 10.1016/j.fsigen.2016.01.012

Reynolds, 2005, Occurrence of bacteria and biochemical markers on public surfaces, Int. J. Environ. Health Res., 15, 225, 10.1080/09603120500115298

Lee, 2001, Preservation and collection of biological evidence, Croat. Med. J., 42, 225

Taylor, 2016, Evaluating forensic biology results given source level propositions, Forensic Sci. Int. Genet., 21, 54, 10.1016/j.fsigen.2015.11.009

Taylor, 2016, Probabilistically determining the cellular source of DNA derived from differential extractions in sexual assault scenarios, Forensic Sci. Int. Genet., 24, 124, 10.1016/j.fsigen.2016.06.012

De Wolff, 2015, A probabilistic approach to body fluid typing interpretation: an exploratory study on forensic saliva testing, Law, Law Probab. Risk, 14, 323

de Zoete, 2016, Cell type determination and association with the DNA donor, Forensic Sci. Int. Genet., 25, 97, 10.1016/j.fsigen.2016.08.004

de Zoete, 2016, A probabilistic approach for the interpretation of RNA profiles as cell type evidence, Forensic Sci. Int. Genet., 20, 30, 10.1016/j.fsigen.2015.09.007

Goray, 2016, Shedder status - an analysis of self and non-self DNA in multiple handprints deposited by the same individuals over time, Forensic Sci. Int. Genet., 23, 190, 10.1016/j.fsigen.2016.05.005

Oleiwi, 2015, The relative DNA-shedding propensity of the palm and finger surfaces, Sci. Justice, 55, 329, 10.1016/j.scijus.2015.04.003

Kanokwongnuwut, 2018, Shedding light on shedders, Forensic Sci. Int. Genet., 36, 20, 10.1016/j.fsigen.2018.06.004

Kamphausen, 2012, Good shedder or bad shedder - the influence of skin diseases on forensic DNA analysis from epithelial abrasions, Int. J. Legal Med., 126, 179, 10.1007/s00414-011-0579-0

Manoli, 2016, Sex-specific age association with primary DNA transfer, Int. J. Legal Med., 130, 103, 10.1007/s00414-015-1291-2

Poetsch, 2013, Influence of an individual’s age on the amount and interpretability of DNA left on touched items, Int. J. Legal Med., 127, 1093, 10.1007/s00414-013-0916-6

Allen, 2008, Identification through typing of DNA recovered from touch transfer evidence: parameters affecting yield of recovered human DNA, J. Forensic Identification, 58, 33

Poetsch, 2018, Impact of several wearers on the persistence of DNA on clothes - a study with experimental scenarios, Int. J. Legal Med., 132, 117, 10.1007/s00414-017-1742-z

Tobias, 2017, The effect of pressure on DNA deposition by touch, Forensic Sci. Int. Genet. Suppl. Ser., 6, e12, 10.1016/j.fsigss.2017.09.020

McColl, 2017, DNA transfer by different parts of a hand, Forensic Sci. Int. Genet. Suppl. Ser., 6, e29, 10.1016/j.fsigss.2017.09.014

Pfeifer, 2017, Persistence of touch DNA on burglary-related tools, Int. J. Legal Med., 131, 941, 10.1007/s00414-017-1551-4

Raymond, 2009, Trace DNA and street robbery: a criminalistic approach to DNA evidence, Forensic Sci. Int. Genet. Suppl. Ser., 2, 544, 10.1016/j.fsigss.2009.08.073

Breathnach, 2016, Probability of detection of DNA deposited by habitual wearer and/or the second individual who touched the garment, Forensic Sci. Int. Genet., 20, 53, 10.1016/j.fsigen.2015.10.001

Mapes, 2015

Taylor, 2016, Observations of DNA transfer within an operational forensic biology laboratory, Forensic Sci. Int. Genet., 23, 33, 10.1016/j.fsigen.2016.02.011

Poy, 2006, Trace DNA presence, origin, and transfer within a forensic biology laboratory and its potential effect on casework, J. Forensic Identification, 56, 558

Raymond, 2008, Assessing trace DNA evidence from a residential burglary: abundance, transfer and persistence, Forensic Sci. Int. Genet. Suppl. Ser., 1, 442, 10.1016/j.fsigss.2007.10.040

Peel, 2004, Attribution of DNA profiles to body fluid stains, Int. Congr. Ser., 1261, 53, 10.1016/S0531-5131(03)01638-8

Slooten, 2017, Identifying common donors in DNA mixtures, with applications to database searches, Forensic Sci. Int. Genet., 26, 40, 10.1016/j.fsigen.2016.10.003

Bremmer, 2012, Forensic quest for age determination of bloodstains, Forensic Sci. Int., 216, 1, 10.1016/j.forsciint.2011.07.027

Lech, 2016, Evaluation of mRNA markers for estimating blood deposition time: towards alibi testing from human forensic stains with rhythmic biomarkers, Forensic Sci. Int. Genet., 21, 119, 10.1016/j.fsigen.2015.12.008

Ackermann, 2010, Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction, Int. J. Legal Med., 124, 387, 10.1007/s00414-010-0457-1

Ballantyne, 2008

2012

van den Berge, 2017, DNA transfer and cell type inference to assist activity level reporting: post-activity background samples as a control in dragging scenario, Forensic Sci. Int. Genet. Suppl. Ser., 6, e591, 10.1016/j.fsigss.2017.10.005

Gill, 1997, The utility of ‘substrate controls’ in relation to ‘contamination’, Forensic Sci. Int., 85, 105, 10.1016/S0379-0738(96)02085-3

Samie, 2016, Stabbing simulations and DNA transfer, Forensic Sci. Int. Genet., 22, 73, 10.1016/j.fsigen.2016.02.001

Fonneløp, 2015, Persistence and secondary transfer of DNA from previous users of equipment, Forensic Sci. Int. Genet. Suppl. Ser., 5, e191, 10.1016/j.fsigss.2015.09.077

Oldoni, 2016, Shedding light on the relative DNA contribution of two persons handling the same object, Forensic Sci. Int. Genet., 24, 148, 10.1016/j.fsigen.2016.07.002

Polley, 2006, An investigation of DNA recovery from firearms and cartridge cases, Can. Soc. Forensic Sci. J., 39, 217, 10.1080/00085030.2006.10757145

Steensma, 2017, An inter-laboratory comparison study on transfer, persistence and recovery of DNA from cable ties, Forensic Sci. Int. Genet., 31, 95, 10.1016/j.fsigen.2017.08.015

Goray, 2016, Could secondary DNA transfer falsely place someone at the scene of a crime?, J. Forensic Sci., 61, 196, 10.1111/1556-4029.12894

Kokshoorn, 2016, Could secondary DNA transfer falsely place someone at the scene of a crime?, J. Forensic Sci., 61, 196, 10.1111/1556-4029.12894

Malsom, 2009, The prevalence of mixed DNA profiles in fingernail samples taken from couples who co-habit using autosomal and Y-STRs, Forensic Sci. Int. Genet., 3, 57, 10.1016/j.fsigen.2008.09.007

Flanagan, 2011, The transfer and persistence of DNA under the fingernails following digital penetration of the vagina, Forensic Sci. Int. Genet., 5, 479, 10.1016/j.fsigen.2010.10.008

Matte, 2012, Prevalence and persistence of foreign DNA beneath fingernails, Forensic Sci. Int. Genet., 6, 236, 10.1016/j.fsigen.2011.05.008

Nurit, 2011, Evaluating the prevalence of DNA mixtures found in fingernail samples from victims and suspects in homicide cases, Forensic Sci. Int. Genet., 5, 532, 10.1016/j.fsigen.2010.12.003

Dowlman, 2010, The prevalence of mixed DNA profiles on fingernail swabs, Sci. Justice, 50, 64, 10.1016/j.scijus.2009.03.005

Kettner, 2015, IPV – bridging the juridical gap between scratches and DNA detection under fingernails of cohabitating partners, Forensic Sci. Int. Genet., 14, 110, 10.1016/j.fsigen.2014.09.017

Wiegand, 1993, DNA typing of debris from fingernails, Int. J. Legal Med., 106, 81, 10.1007/BF01225045

Bozzo, 2015, Analysis of DNA from fingernail samples in criminal cases, Forensic Sci. Int. Genet. Suppl. Ser., 5, e601, 10.1016/j.fsigss.2015.09.237

Sanchez-Hanke, 1996, PCR-typing of DNA extracted from epidermal particles won by scratching, 16th Congress of the International Society for Forensic Haemogenetics, 10.1007/978-3-642-80029-0_91

Cerri, 2009, Prevalence of mixed DNA profiles in fingernail swabs from autoptic cases, Forensic Sci. Int. Genet. Suppl. Ser., 2, 163, 10.1016/j.fsigss.2009.08.015

Fernández-Rodrı́guez, 2003, Genetic analysis of fingernail debris: application to forensic casework, Int. Congr. Ser., 1239, 921, 10.1016/S0531-5131(02)00316-3

Piccinini, 2003, A 5-year study on DNA recovered from fingernail clippings in homicide cases in Milan, Int. Congr. Ser., 1239, 929, 10.1016/S0531-5131(02)00501-0

Harbison, 2003, The persistence of DNA under fingernails following submersion in water, Int. Congr. Ser., 1239, 809, 10.1016/S0531-5131(02)00586-1

Hebda, 2014, Collecting and analyzing DNA evidence from fingernails: a comparative study, J. Forensic Sci., 59, 1343, 10.1111/1556-4029.12465

Ruan, 2018, Investigation of DNA transfer onto clothing during regular daily activities, Int. J. Legal Med., 132, 1035, 10.1007/s00414-017-1736-x

Noël, 2016, DNA transfer during laundering may yield complete genetic profiles, Forensic Sci. Int. Genet., 23, 240, 10.1016/j.fsigen.2016.05.004

Blackie, 2016, DNA profiles from clothing fibers using direct PCR, Forensic Sci. Med. Pathol., 12, 331, 10.1007/s12024-016-9784-y

Stouder, 2001, Trace evidence scrapings: a valuable source of DNA?, Forensic Science Communications, 4

Magee, 2018, Wearer and non-wearer DNA on the collars and cuffs of upper garments of worn clothing, Forensic Science International: Genetics, 34, 152, 10.1016/j.fsigen.2018.02.011

R v Pfennig [2016], SASC 170. Available at: http://www.austlii.edu.au/cgi-bin/viewdoc/au/cases/sa/SASC/2016/170.html.

R v Pfennig (No 2) [2016], SASC 171. Available at: http://www.austlii.edu.au/cgi-bin/viewdoc/au/cases/sa/SASC/2016/171.html.

Schneider, 2011, Hot flakes in cold cases, Int. J. Legal Med., 125, 543, 10.1007/s00414-011-0548-7

van Oorschot, 2016, Trace DNA profiling in missing persons investigations, 353

A. Jamieson, S. Bader, Letter: Commentary on Breathnach et al., Forensic Science International: Genetics 25 (2016) e4–e5.

Cerdas, 2016, Menstrual cycle phase at the time of rape does not affect recovery of semen or amplification of STR profiles of a suspect in vaginal swabs, Forensic Sci. Int., 259, 36, 10.1016/j.forsciint.2015.12.003

Brotman, 2010, Effect of menses on clearance of Y-chromosome in vaginal fluid: implications for a biomarker of recent sexual activity, Sex. Transm. Dis., 37, 1, 10.1097/OLQ.0b013e3181b5f15d

Morrison, 1972, Persistence of spermatozoa in the vagina and cervix, Br. J. Vener. Dis., 48, 141

Casey, 2017, The persistence of sperm and the development of time since intercourse (TSI) guidelines in sexual assault cases at Forensic Science Ireland, Dublin, Ireland, J. Forensic Sci., 62, 585, 10.1111/1556-4029.13325

Hellerud, 2011, Semen detection: a retrospective overview from 2010, Forensic Sci. Int. Genet. Suppl. Ser., 3, e391, 10.1016/j.fsigss.2011.09.057

Clarke, 2012, Evidence recovery and persistence of semen in sexual assault investigation kits, ANZFSS 21st International Symposium on the Forensic Sciences

Nittis, 2016, New oral cut-off time limits in NSW, J. Forensic Leg. Med., 44, 92, 10.1016/j.jflm.2016.09.006

Willott, 1982, Spermatozoa - their persistence after sexual intercourse, Forensic Sci. Int., 19, 135, 10.1016/0379-0738(82)90040-8

Astrup, 2012, Detection of spermatozoa following consensual sexual intercourse, Forensic Sci. Int., 221, 137, 10.1016/j.forsciint.2012.04.024

DiFrancesco, 2018, Persistence of spermatozoa: lessons learned from going to the sources, Sci. Justice, 58, 244, 10.1016/j.scijus.2018.03.004

Olofsson, 2011, Evaluation of Y-STR analyses of sperm cell negative vaginal samples, Forensic Sci. Int. Genet. Suppl. Ser., 3, e141, 10.1016/j.fsigss.2011.08.071

Hall, 2003, Novel Y-STR typing strategies reveal the genetic profile of the semen donor in extended interval post-coital cervicovaginal samples, Forensic Sci. Int., 136, 58, 10.1016/S0379-0738(03)00258-5

Benschop, 2010, Post-coital vaginal sampling with nylon flocked swabs improves DNA typing, Forensic Sci. Int. Genet., 4, 115, 10.1016/j.fsigen.2009.07.003

McDonald, 2015, Y-STR analysis of digital and/or penile penetration cases with no detected spermatozoa, Forensic Sci. Int. Genet., 15, 84, 10.1016/j.fsigen.2014.10.015

Dziegelewski, 2002, Use of a Y chromosome probe as an aid in the forensic proof of sexual assault, J. Forensic Sci., 47, 601, 10.1520/JFS2001180

Pollack, 1943, Semen and seminal stains, Arch. Pathol., 35, 140

Murray, 2007, Identification and isolation of male cells using fluorescence in situ hybridisation and laser microdissection, for use in the investigation of sexual assault, Forensic Sci. Int. Genet., 1, 247, 10.1016/j.fsigen.2007.05.003

Albani, 2018, Background levels of male DNA in the vaginal cavity, Forensic Sci. Int. Genet., 33, 110, 10.1016/j.fsigen.2017.12.003

Stanciu, 2015, Optical characterization of epidermal cells and their relationship to DNA recovery from touch samples, F1000Research, 4

Brayley-Morris, 2015, Persistence of DNA from laundered semen stains: implications for child sex trafficking cases, Forensic Sci. Int. Genet., 19, 165, 10.1016/j.fsigen.2015.07.016

Edler, 2017, Blood trace evidence on washed textiles - a systematic approach, Int. J. Legal Med., 131, 1179, 10.1007/s00414-017-1549-y

Kulstein, 2018, Comprehensive examination of conventional and innovative body fluid identification approaches and DNA profiling of laundered blood- and saliva-stained pieces of cloths, Int. J. Legal Med., 132, 67, 10.1007/s00414-017-1691-6

Kamphausen, 2015, Everything clean? Transfer of DNA traces between textiles in the washtub, Int. J. Legal Med., 129, 709, 10.1007/s00414-015-1203-5

Helmus, 2018, Persistence of DNA on clothes after exposure to water for different time periods - a study on bathtub, pond, and river, Int. J. Legal Med., 132, 99, 10.1007/s00414-017-1695-2

Voskoboinik, 2018, Laundry in a washing machine as a mediator of secondary and tertiary DNA transfer, Int. J. Legal Med., 132, 373, 10.1007/s00414-017-1617-3

van Oorschot, 2015, Activities between activities of focus - relevant when assessing DNA transfer probabilities, Forensic Sci. Int. Genet. Suppl. Ser., 5, e75, 10.1016/j.fsigss.2015.09.031

Stella, 2017, Hand activities during robberies - relevance to consideration of DNA transfer and detection, Forensic Sci. Int. Genet. Suppl. Ser., 6, e3, 10.1016/j.fsigss.2017.09.002

Durdle, 2018, Location of artifacts deposited by the blow fly Lucilia cuprina after feeding on human blood at simulated indoor crime scenes, J. Forensic Sci., 63, 1261, 10.1111/1556-4029.13693

Durdle, 2009, The transfer of human DNA by Lucilia cuprina (Meigen) (Diptera: calliphoridae), Forensic Sci. Int. Genet. Suppl. Ser., 2, 180, 10.1016/j.fsigss.2009.08.095

Durdle, 2013, The human DNA content in artifacts deposited by the blowfly Lucilia cuprina fed human blood, semen and saliva, Forensic Sci. Int., 233, 212, 10.1016/j.forsciint.2013.09.015

Durdle, 2013, The morphology of fecal and regurgitation artifacts deposited by the blow fly Lucilia cuprina fed a diet of human blood, J. Forensic Sci., 58, 897, 10.1111/1556-4029.12145

Durdle, 2015, The use of forensic tests to distinguish blowfly artifacts from human blood, semen, and saliva, J. Forensic Sci., 60, 468, 10.1111/1556-4029.12663

Replogle, 1994, Identification of host DNA by amplified fragment length polymorphism analysis: preliminary analysis of human crab louse (Anoplura: pediculidae) excreta, J. Med. Entomol., 31, 686, 10.1093/jmedent/31.5.686

Coulson, 1990, Amplification and analysis of human DNA present in mosquito bloodmeals, Med. Vet. Entomol., 4, 357, 10.1111/j.1365-2915.1990.tb00452.x

Kreike, 1999, Isolation and characterization of human DNA from mosquitoes (Culicidae), Int. J. Legal Med., 112, 380, 10.1007/s004140050018

Spitaleri, 2006, Genotyping of human DNA recovered from mosquitoes found on a crime scene, Int. Congr. Ser., 1288, 574, 10.1016/j.ics.2005.11.055

Fitzgerald v The Queen [2014], HCA 28. Available at: http://www.austlii.edu.au/cgi-bin/sinodisp/au/cases/cth/HCA/2014/28.html.

2010

Himmelreich, 2009

Commonwealth vs. Dirk K. Greineder [2013], 464 Mass. 580. Available at: http://masscases.com/cases/sjc/464/464mass580.html.

R v Hillier [2007], HCA 13. Available at: http://www.austlii.edu.au/cgi-bin/sinodisp/au/cases/cth/HCA/2007/13.html.

van Oorschot, 2016, Collection of samples for DNA analysis, 1

Verdon, 2014, Evaluation of tapelifting as a collection method for touch DNA, Forensic Sci. Int. Genet., 8, 179, 10.1016/j.fsigen.2013.09.005

Verdon, 2014, Swabs as DNA collection devices for sampling different biological materials from different substrates, J. Forensic Sci., 59, 1080, 10.1111/1556-4029.12427

Pang, 2007, Double swab technique for collecting touched evidence, Leg. Med., 9, 181, 10.1016/j.legalmed.2006.12.003

Aloraer, 2015, Collection protocols for the recovery of biological samples, Forensic Sci. Int. Genet. Suppl. Ser., 5, 10.1016/j.fsigss.2015.09.083

Hess, 2017, Recovery of trace DNA on clothing: a comparison of mini-tape lifting and three other forensic evidence collection techniques, J. Forensic Sci., 62, 187, 10.1111/1556-4029.13246

de Bruin, 2012, Comparison of stubbing and the double swab method for collecting offender epithelial material from a victim’s skin, Forensic Sci. Int. Genet., 6, 219, 10.1016/j.fsigen.2011.04.019

Wood, 2017, Efficiencies of recovery and extraction of trace DNA from non-porous surfaces, Forensic Sci. Int. Genet. Suppl. Ser., 6, e153, 10.1016/j.fsigss.2017.09.022

Bond, 2017, The effectiveness of trace DNA profiling - a comparison between a U.S. And a U.K. Law enforcement jurisdiction, J. Forensic Sci., 62, 753, 10.1111/1556-4029.13317

Thomasma, 2013, The influence of swabbing solutions on DNA recovery from touch samples, J. Forensic Sci., 58, 465, 10.1111/1556-4029.12036

Plaza, 2016, Nondestructive biological evidence collection with alternative swabs and adhesive lifters, J. Forensic Sci., 61, 485, 10.1111/1556-4029.12980

Hedman, 2015, Crime scene DNA sampling by wet-vacuum applying M-Vac, Forensic Sci. Int. Genet. Suppl. Ser., 5, e89, 10.1016/j.fsigss.2015.09.036

Dieltjes, 2011, A sensitive method to extract DNA from biological traces present on ammunition for the purpose of genetic profiling, Int. J. Legal Med., 125, 597, 10.1007/s00414-010-0454-4

Ip, 2015, An evaluation of the performance of five extraction methods: Chelex® 100, QIAamp® DNA Blood Mini Kit, QIAamp® DNA Investigator Kit, QIAsymphony® DNA Investigator® Kit and DNA IQ™, Sci. Justice, 55, 200, 10.1016/j.scijus.2015.01.005

Templeton, 2015, Direct PCR improves the recovery of DNA from various substrates, J. Forensic Sci., 60, 1558, 10.1111/1556-4029.12843

Swaran, 2012, A comparison between direct PCR and extraction to generate DNA profiles from samples retrieved from various substrates, Forensic Sci. Int. Genet., 6, 407, 10.1016/j.fsigen.2011.08.007

Ambers, 2018, Direct PCR amplification of DNA from human bloodstains, saliva, and touch samples collected with microFLOQ® swabs, Forensic Sci. Int. Genet., 32, 80, 10.1016/j.fsigen.2017.10.010

Cavanaugh, 2018, Direct PCR amplification of forensic touch and other challenging DNA samples: a review, Forensic Sci. Int. Genet., 32, 40, 10.1016/j.fsigen.2017.10.005

Martin, 2018, DNA profiles generated from a range of touched sample types, Forensic Sci. Int. Genet., 36, 13, 10.1016/j.fsigen.2018.06.002

Zuidberg, 2018, Targeting relevant sampling areas for human biological traces: where to sample displaced bodies for offender DNA?, Sci. Justice, 10.1016/j.scijus.2018.10.002

Fraser, 2011, Visualisation of fingermarks and grab impressions on fabrics. Part 1: Gold/zinc vacuum metal deposition, Forensic Sci. Int., 208, 74, 10.1016/j.forsciint.2010.11.003

Knighting, 2013, Visualisation of fingermarks and grab impressions on dark fabrics using silver vacuum metal deposition, Sci. Justice, 53, 309, 10.1016/j.scijus.2013.01.002

Haines, 2013, Detection of DNA within fingermarks, Forensic Sci. Int. Genet. Suppl. Ser., 4, e290, 10.1016/j.fsigss.2013.10.148

Haines, 2018, Detection of latent DNA on tape-lifts using fluorescent in situ detection, Aust. J. Forensic Sci., 10.1080/00450618.2017.1416174

Klein, 2017, Evaluating the efficacy of DNA differential extraction methods for sexual assault evidence, Forensic Sci. Int. Genet., 29, 109, 10.1016/j.fsigen.2017.03.021

Vandewoestyne, 2011, Laser capture microdissection for forensic DNA analysis, Forensic Sci. Int. Genet. Suppl. Ser., 3, e117, 10.1016/j.fsigss.2011.08.058

Anoruo, 2007, Isolating cells from non-sperm cellular mixtures using the PALM® microlaser micro dissection system, Forensic Sci. Int., 173, 93, 10.1016/j.forsciint.2007.01.031

Elliott, 2003, Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides, Forensic Sci. Int., 137, 28, 10.1016/S0379-0738(03)00267-6

Budimlija, 2005, Forensic applications of laser capture microdissection: use in DNA-based parentage testing and platform validation, Croat. Med. J., 46, 549

Vandewoestyne, 2010, Laser capture microdissection in forensic research: a review, Int. J. Legal Med., 124, 513, 10.1007/s00414-010-0499-4

Sanders, 2006, Laser microdissection separation of pure spermatozoa from epithelial cells for short tandem repeat analysis, J. Forensic Sci., 51, 748, 10.1111/j.1556-4029.2006.00180.x

Meredith, 2012, Development of a one-tube extraction and amplification method for DNA analysis of sperm and epithelial cells recovered from forensic samples by laser microdissection, Forensic Sci. Int. Genet., 6, 91, 10.1016/j.fsigen.2011.02.007

Verdon, 2015, FACS separation of non-compromised forensically relevant biological mixtures, Forensic Sci. Int. Genet., 14, 194, 10.1016/j.fsigen.2014.10.019

Williamson, 2018, Enhanced DNA mixture deconvolution of sexual offense samples using the DEPArray™ system, Forensic Sci. Int. Genet., 34, 265, 10.1016/j.fsigen.2018.03.001

Fontana, 2017, Isolation and genetic analysis of pure cells from forensic biological mixtures: the precision of a digital approach, Forensic Sci. Int. Genet., 29, 225, 10.1016/j.fsigen.2017.04.023

Dean, 2015, Separation of uncompromised whole blood mixtures for single source STR profiling using fluorescently-labeled human leukocyte antigen (HLA) probes and fluorescence activated cell sorting (FACS), Forensic Sci. Int. Genet., 17, 8, 10.1016/j.fsigen.2015.03.003

Anslinger, 2007, Sex-specific fluorescent labelling of cells for laser microdissection and DNA profiling, Int. J. Legal Med., 121, 54, 10.1007/s00414-005-0065-7

Vandewoestyne, 2009, Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures, Int. J. Legal Med., 123, 441, 10.1007/s00414-009-0341-z

Dziak, 2018, Trace DNA sampling success from evidence items commonly encountered in forensic casework, J. Forensic Sci., 63, 835, 10.1111/1556-4029.13622

Castella, 2008, DNA profiling success and relevance of 1739 contact stains from caseworks, Forensic Sci. Int. Genet. Suppl. Ser., 1, 405, 10.1016/j.fsigss.2007.10.071

van Oorschot, 2012, Assessing DNA profiling success rates: need for more and better collection of relevant data, Forensic Sci. Policy Manag. Int. J., 3, 37, 10.1080/19409044.2012.719581

Raymond, 2008, Trace DNA analysis: do you know what your neighbour is doing? A multi-jurisdictional survey, Forensic Sci. Int. Genet., 2, 19, 10.1016/j.fsigen.2007.07.001

Raymond, 2011, How far have we come with trace DNA since 2004? The Australian and New Zealand experience, Aust. J. Forensic Sci., 43, 231, 10.1080/00450618.2010.484815

Association of Forensic Science Providers, 2009, Standards for the formulation of evaluative forensic science expert opinion, Sci. Justice, 49, 161, 10.1016/j.scijus.2009.07.004

2017

Jackson, 2015, Case assessment and interpretation of expert evidence: guidance for judges, lawyers

Benschop, 2017, Results of an inter and intra laboratory exercise on the assessment of complex autosomal DNA profiles, Sci. Justice, 57, 21, 10.1016/j.scijus.2016.10.001

Butler, 2018, NIST interlaboratory studies involving DNA mixtures (MIX05 and MIX13): variation observed and lessons learned, Forensic Sci. Int. Genet., 37, 81, 10.1016/j.fsigen.2018.07.024

Buckleton, 2018, NIST interlaboratory studies involving DNA mixtures (MIX13): a modern analysis, Forensic Sci. Int. Genet., 37, 172, 10.1016/j.fsigen.2018.08.014

O’Hagan, 2006

Jamieson, 2011

Jamieson, 2012

Edmond, 2014, How to cross-examine forensic scientists: a guide for lawyers, Australian Bar Review, 39, 174

Edmond, 2016, Model forensic science, Aust. J. Forensic Sci., 48, 496, 10.1080/00450618.2015.1128969

Finnebraaten, 2008, May a speaking individual contaminate the routine DNA laboratory?, Forensic Sci. Int. Genet. Suppl. Ser., 1, 421, 10.1016/j.fsigss.2007.10.030

Rutty, 2003, The effectiveness of protective clothing in the reduction of potential DNA contamination of the scene of crime, Int. J. Legal Med., 117, 170, 10.1007/s00414-001-0279-2

Daniel, 2011, An investigation of the presence of DNA on unused laboratory gloves, Forensic Sci. Int. Genet. Suppl. Ser., 3, e45, 10.1016/j.fsigss.2011.08.022

Gibb, 2012, Assessment of the possibility of DNA accumulation and transfer in a superglue chamber, J. Forensic Identification, 62, 409

Poy, 2006, Beware; gloves and equipment used during the examination of exhibits are potential vectors for transfer of DNA-containing material, Int. Congr. Ser., 1288, 556, 10.1016/j.ics.2005.09.126

Pickrahn, 2017, Contamination incidents in the pre-analytical phase of forensic DNA analysis in Austria - statistics of 17 years, Forensic Sci. Int. Genet., 31, 12, 10.1016/j.fsigen.2017.07.012

van Oorschot, 2015, Considerations relating to the components of a laboratory DNA contamination minimisation monitoring (DCMM) Program, Forensic Sci. Policy Manag., 6, 91, 10.1080/19409044.2015.1085926

Ballantyne, 2013, Environmental DNA monitoring: beware of the transition to more sensitive typing methodologies, Aust. J. Forensic Sci., 45, 323, 10.1080/00450618.2013.788683

Ballantyne, 2015, DNA contamination minimisation – finding an effective cleaning method, Aust. J. Forensic Sci., 47, 428, 10.1080/00450618.2015.1004195

Hauhart, 2014, DNA evidence: examining police officers’ knowledge of handling procedures in a mid-size department, Int. J. Criminol. Sociol., 3, 360, 10.6000/1929-4409.2014.03.31

Kampmann, 2017, Decrease DNA contamination in the laboratories, Forensic Sci. Int. Genet. Suppl. Ser., 6, e577, 10.1016/j.fsigss.2017.09.223

Vandewoestyne, 2011, Sources of DNA contamination and decontamination procedures in the forensic laboratory, J. Forensic Res., S2:001

Kloosterman, 2014, Error rates in forensic DNA analysis: definition, numbers, impact and communication, Forensic Sci. Int. Genet., 12, 77, 10.1016/j.fsigen.2014.04.014

Basset, 2018, Lessons from a study of DNA contaminations from police services and forensic laboratories in Switzerland, Forensic Sci. Int. Genet., 33, 147, 10.1016/j.fsigen.2017.12.012

Ansell, 2013, Internal quality control in forensic DNA analysis, Accredit. Qual. Assur., 18, 279, 10.1007/s00769-013-0968-9

Forensic Science Regulator, 2017

Forensic Science Regulator, 2015

Forensic Science Regulator, 2016

Forensic Science Regulator, 2016

Forensic Science Regulator, 2014

ENFSI DNA working group, 2017

Gill, 2010, Manufacturer contamination of disposable plastic-ware and other reagents - an agreed position statement by ENFSI, SWGDAM and BSAG, Forensic Sci. Int. Genet., 4, 269, 10.1016/j.fsigen.2009.08.009

British Standards Institution, 2016

Vanek, 2017, Does the new ISO 18385:2016 standard for forensic DNA-grade products need a revision?, Forensic Sci. Int. Genet. Suppl. Ser., 6, e148, 10.1016/j.fsigss.2017.09.024

Lapointe, 2015, Leading-edge forensic DNA analyses and the necessity of including crime scene investigators, police officers and technicians in a DNA elimination database, Forensic Sci. Int. Genet., 19, 50, 10.1016/j.fsigen.2015.06.002

Biedermann, 2016, Evaluation of forensic DNA traces when propositions of interest relate to activities: analysis and discussion of recurrent concerns, Front. Genet., 7

van Oorschot, 2017, Need for dedicated training, competency assessment, authorisations and ongoing proficiency testing for those addressing DNA transfer issues, Forensic Sci. Int. Genet. Suppl. Ser., 6, e32, 10.1016/j.fsigss.2017.09.013

Tully, 2018

Taroni, 2014

Evett, 2002, Interpreting small quantities of DNA: the hierarchy of propositions and the use of Bayesian networks, J. Forensic Sci., 47, 520, 10.1520/JFS15291J

Cook, 1998, A model for case assessment and interpretation, Sci. Justice, 38, 151, 10.1016/S1355-0306(98)72099-4

Taylor, 2016, The evaluation of exclusionary DNA results: a discussion of issues in R v. Drummond, Law, Law Probab. Risk, 15, 175, 10.1093/lpr/mgw004

Wieten, 2015, The interpretation of traces found on adhesive tapes, Law, Law Probab. Risk, 14, 305, 10.1093/lpr/mgv012

Gill, 2018, Forensic Sci. Int. Genet., 36, 189, 10.1016/j.fsigen.2018.07.003