DNA methylation program during development
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anway M D, Leathers C, Skinner M K (2006). Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology, 147(12): 5515–5523
Bakulski K M, Rozek L S, Dolinoy D C, Paulson H L, Hu H (2012). Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res, 9(5): 563–573
Brandeis M, Ariel M, Cedar H (1993). Dynamics of DNA methylation during development. Bioessays, 15(11): 709–713
Brown D C, Grace E, Sumner A T, Edmunds A T, Ellis P M (1995). ICF syndrome (immunodeficiency, centromeric instability and facial anomalies): investigation of heterochromatin abnormalities and review of clinical outcome. Hum Genet, 96(4): 411–416
Brown K D, Robertson K D (2007). DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet, 39(3): 289–290
Busslinger M, Hurst J, Flavell R A (1983). DNA methylation and the regulation of globin gene expression. Cell, 34(1): 197–206
Caldji C, Hellstrom I C, Zhang T Y, Diorio J, Meaney M J (2011). Environmental regulation of the neural epigenome. FEBS Lett, 2049–2058
Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky P M, Meaney M J (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA, 95(9): 5335–5340
Callaghan B, Feldman D, Gruis K, Feldman E (2011). The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener Dis, 8(1–2): 1–8
Champagne F A, Curley J P (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev, 33(4): 593–600
Chia N, Wang L, Lu X, Senut M C, Brenner C, Ruden D M (2011). Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics, 6(7): 853–856
Dawlaty MM, Ganz K, Powell B E, Hu Y C, Markoulaki S, Cheng AW, Gao Q, Kim J, Choi S W, Page D C, Jaenisch R (2011). Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell, 9(2): 166–175
De Carvalho D D, You J S, Jones P A (2010). DNA methylation and cellular reprogramming. Trends Cell Biol, 20(10): 609–617
Deaton A M, Bird A (2011). CpG islands and the regulation of transcription. Genes Dev, 25(10): 1010–1022
del Mazo J, Prantera G, Torres M, Ferraro M (1994). DNA methylation changes during mouse spermatogenesis. Chromosome Res, 2(2): 147–152
Dolinoy D C (2008). The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev, 66(Suppl 1): S7–S11
Dolinoy D C, Huang D, Jirtle R L (2007). Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA, 104(32): 13056–13061
Dolinoy D C, Weidman J R, Waterland R A, Jirtle R L (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect, 114(4): 567–572
Duhl D M, Vrieling H, Miller K A, Wolff G L, Barsh G S (1994). Neomorphic agouti mutations in obese yellow mice. Nat Genet, 8(1): 59–65
Gisselsson D, Shao C, Tuck-Muller C M, Sogorovic S, Pålsson E, Smeets D, Ehrlich M (2005). Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma, 114(2): 118–126
Goll M G, Bestor T H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74(1): 481–514
Govorko D, Bekdash R A, Zhang C, Sarkar D K (2012). Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol Psychiatry, 72(5): 378–388
Green ML, Singh A V, Zhang Y, Nemeth K A, Sulik K K, Knudsen T B (2007). Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn, 236(2): 613–631
Guo J U, Su Y, Zhong C, Ming G L, Song H (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3): 423–434
Heijmans B T, Tobi E W, Stein A D, Putter H, Blauw G J, Susser E S, Slagboom P E, Lumey L H (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA, 105(44): 17046–17049
Hermann A, Gowher H, Jeltsch A (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci, 61(19–20): 2571–2587
Inoue A, Shen L, Dai Q, He C, Zhang Y (2011). Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res, 21(12): 1670–1676
Inoue A, Zhang Y (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 334 (6053): 194
Iqbal K, Jin S G, Pfeifer G P, Szabó P E (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA, 108(9): 3642–3647
Ito S, D’Alessio A C, Taranova O V, Hong K, Sowers L C, Zhang Y (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466:1129–1136
Ito S, Shen L, Dai Q, Wu S C, Collins L B, Swenberg J A, He C, Zhang Y (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047): 1300–1303
Jeffy B D, Chirnomas R B, Romagnolo D F (2002). Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ Mol Mutagen, 39(2–3): 235–244
Jones P A, Takai D (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532): 1068–1070
Kaati G, Bygren L O, Edvinsson S (2002). Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet, 10(11): 682–688
Kafri T, Gao X, Razin A (1993). Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci USA, 90(22): 10558–10562
Kahn H S, Graff M, Stein A D, Lumey L H (2009). A fingerprint marker from early gestation associated with diabetes in middle age: the Dutch Hunger Winter Families Study. Int J Epidemiol, 38(1): 101–109
Kaminen-Ahola N, Ahola A, Maga M, Mallitt K A, Fahey P, Cox T C, Whitelaw E, Chong S (2010). Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet, 6(1): e1000811
Karymov M A, Tomschik M, Leuba S H, Caiafa P, Zlatanova J (2001). DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. FASEB J, 15(14): 2631–2641
Kile M L, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Hsueh Y M, Wright R O, Christiani D C (2012). Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect, 120(7): 1061–1066
Koh K P, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer C A, Mostoslavsky G, Lahesmaa R, Orkin S H, Rodig S J, Daley G Q, Rao A (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2): 200–213
Kriaucionis S, Heintz N (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929): 929–930
Kucharski R, Maleszka J, Foret S, Maleszka R (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871): 1827–1830
Kundakovic M, Champagne F A (2011). Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun, 25(6): 1084–1093
Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322
Liu Y, Balaraman Y, Wang G, Nephew K P, Zhou F C (2009). Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics, 4(7): 500–511
Lumey L H, Stein A D (2009). Transgenerational effects of prenatal exposure to the Dutch famine. BJOG, 116(6): 868, author reply 868
Lumey L H, Stein A D, Kahn H S, van der Pal-de Bruin KM, Blauw G J, Zybert P A, Susser E S (2007). Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol, 36(6): 1196–1204
Martínez L, Jiménez V, García-Sepúlveda C, Ceballos F, Delgado J M, Niño-Moreno P, Doniz L, Saavedra-Alanís V, Castillo C G, Santoyo M E, González-Amaro R, Jiménez-Capdeville M E (2011). Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int, 58(5): 574–581
Mason J B, Choi S W (2005). Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol, 35(3): 235–241
McKay J A, Williams E A, Mathers J C (2004). Folate and DNA methylation during in utero development and aging. Biochem Soc Trans, 32(Pt 6): 1006–1007
Meaney M J, Szyf M (2005). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci, 7(2): 103–123
Morgan H D, Santos F, Green K, Dean W, Reik W (2005). Epigenetic reprogramming in mammals. Hum Mol Genet, 14(Spec No 1): R47–R58
Nakanishi M O, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S (2012). Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics, 7(2): 173–182
Okano M, Li E (2002). Genetic analyses of DNA methyltransferase genes in mouse model system. J Nutr, 132(8 Suppl): 2462S–2465S
Otero N K, Thomas J D, Saski C A, Xia X, Kelly S J (2012). Choline supplementation and DNA methylation in the hippocampus and prefrontal cortex of rats exposed to alcohol during development. Alcohol Clin Exp Res, doi: 10.1111/j.1530-0277.2012.01784.x
Ouko L A, Shantikumar K, Knezovich J, Haycock P, Schnugh D J, Ramsay M (2009). Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IGDMR in male gametes-implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res, 33(9):1615–1627
Perera F, Herbstman J (2011). Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol, 31(3): 363–373
Pilsner J R, Hu H, Ettinger A, Sánchez B N, Wright R O, Cantonwine D, Lazarus A, Lamadrid-Figueroa H, Mercado-García A, Téllez-RojoM M, Hernández-Avila M (2009). Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect, 117(9): 1466–1471
Ramsahoye B H, Davies C S, Mills K I (1996). DNA methylation: biology and significance. Blood Rev, 10(4): 249–261
Schermelleh L, Haemmer A, Spada F, Rösing N, Meilinger D, Rothbauer U, Cardoso M C, Leonhardt H (2007). Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res, 35(13): 4301–4312
Schmid M, Haaf T, Grunert D (1984). 5-Azacytidine-induced undercondensations in human chromosomes. Hum Genet, 67(3): 257–263
Singh R P, Shiue K, Schomberg D, Zhou F C (2009). Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant, 18 (10): 1197–1211
Stein A D, Zybert P A, van de Bor M, Lumey L H (2004). Intrauterine famine exposure and body proportions at birth: the Dutch Hunger Winter. Int J Epidemiol, 33(4): 831–836
Stein A D, Zybert P A, van der Pal-de Bruin K, Lumey L H (2006). Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch Famine. Eur J Epidemiol, 21 (10): 759–765
Suter M, Ma J, Harris A, Patterson L, Brown K A, Shope C, Showalter L, Abramovici A, Aagaard-Tillery K M (2011). Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics, 6(11): 1284–1294
Szulwach K E, Li X, Li Y, Song C X, Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14:1607–1616
Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935
Tang W Y, Levin L, Talaska G, Cheung Y Y, Herbstman J, Tang D, Miller R L, Perera F, Ho S M (2012). Maternal Exposure to Polycyclic Aromatic Hydrocarbons and 5′-CpG Methylation of Interferon-Γ in Cord White Blood Cells. Environ Health Perspect, 120(8): 1195–1200
Tawa R, Ono T, Kurishita A, Okada S, Hirose S (1990). Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation, 45(1): 44–48
Waterland R A, Jirtle R L (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol, 23(15): 5293–5300
Wolffe A P, Jones P L, Wade P A (1999). DNA demethylation. Proc Natl Acad Sci USA, 96(11): 5894–5896
Wright R J (2011). Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin North Am, 31(1): 19–39
Wu H, D’Alessio A C, Ito S, Wang Z, Cui K, Zhao K, Sun Y E, Zhang Y (2011). Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev, 25(7): 679–684
Wu Q, Ohsako S, Ishimura R, Suzuki J S, Tohyama C (2004). Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod, 70(6): 1790–1797
Wu S C, Zhang Y (2010). Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 11(9): 607–620
Xu X F, Cheng F, Du L Z (2011). Epigenetic regulation of pulmonary arterial hypertension. Hypertens Res, 34(9): 981–986
Yildirim O, Li R, Hung J H, Chen P B, Dong X, Ee L S, Weng Z, Rando O J, Fazzio T G (2011). Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell, 147(7): 1498–1510
Yisraeli J, Frank D, Razin A, Cedar H (1988). Effect of in vitro DNA methylation on beta-globin gene expression. Proc Natl Acad Sci USA, 85(13): 4638–4642
Zeisel S H (2007). Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life, 59(6): 380–387
Zhou F C, Balaraman Y, Teng M, Liu Y, Singh R P, Nephew K P (2011a). Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol Clin Exp Res, 35(4): 735–746
Zhou F C, Chen Y, Love A (2011b). Cellular DNA methylation program during neurulation and its alteration by alcohol exposure. Birth Defects Res A Clin Mol Teratol, 91(8): 703–715