DNA methylation modification is associated with gonadal differentiation in Monopterus albus

Springer Science and Business Media LLC - Tập 10 - Trang 1-11 - 2020
Xin Wang1, Fengling Lai1, Jun Xiong2, Wang Zhu1, Bifeng Yuan2, Hanhua Cheng1, Rongjia Zhou1
1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
2Key Laboratory of Analytical Chemistry for Biology and Medicine of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, China

Tóm tắt

Both testis and ovary can be produced sequentially in an individual with the same genome when sex reversal occurs in the teleost Monopterus albus, and epigenetic modification is supposed to be involved in gonadal differentiation. However, DNA methylation regulation mechanism underlying the gonadal differentiation remains unclear. Here, we used liquid chromatography-electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) to simultaneously determine endogenous levels of both 5-methyl-2′-deoxycytidine (m5dC) and 5-hydroxymethyl-2′-deoxycytidine (hm5dC) during gonadal differentiation. Overall DNA methylation level was upregulated from ovary to testis via ovotestis. As a de novo methylase, dnmt3aa expression was also upregulated in the process. Notably, we determined transcription factor Foxa1 for dnmt3aa gene expression. Site-specific mutations and chromatin immunoprecipitation showed that Foxa1 can bind to and activate the dnmt3aa promoter. Furthermore, DNA methylation levels of key genes foxl2 (forkhead box L2) and cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a) in regulation of female hormone synthesis were consistently upregulated during gonadal differentiation. These data suggested that dynamic change of DNA methylation modification is associated with gonadal differentiation.

Tài liệu tham khảo

Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet. 2012;28(1):33–42. Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010;330(6004):622–7. Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet. 2008;9(2):129–40. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43(8):811–4. Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477(7366):606–10. Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. Adv Exp Med Biol. 2016;945:63–86. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–9. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429(6994):900–3. Yaman R, Grandjean V. Timing of entry of meiosis depends on a mark generated by DNA methyltransferase 3a in testis. Mol Reprod Dev. 2006;73(3):390–7. Zamudio N, Barau J, Teissandier A, Walter M, Borsos M, Servant N, Bourc’his D. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 2015;29(12):1256–70. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14(6):341–56. Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156(1–2):45–68. Bochtler M, Kolano A, Xu GL. DNA demethylation pathways: additional players and regulators. BioEssays. 2017;39(1):1–13. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11(9):607–20. Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development and disease. Nat Rev Genet. 2009;10(4):233–40. Jackson BC, Carpenter C, Nebert DW, Vasiliou V. Update of human and mouse forkhead box (FOX) gene families. Hum genomics. 2010;4(5):345–52. Wijchers PJ, Burbach JP, Smidt MP. In control of biology: of mice, men and Foxes. Biochem J. 2006;397(2):233–46. Serandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh C, Barloy-Hubler F, Brown M, Lupien M, Metivier R, et al. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res. 2011;21(4):555–65. Yang YA, Zhao JC, Fong KW, Kim J, Li S, Song C, Song B, Zheng B, He C, Yu J. FOXA1 potentiates lineage-specific enhancer activation through modulating TET1 expression and function. Nucleic Acids Res. 2016;44(17):8153–64. Cheng H, Guo Y, Yu Q, Zhou R. The rice field eel as a model system for vertebrate sexual development. Cytogenet Genome Res. 2003;101(3–4):274–7. Tang Y, Zheng SJ, Qi CB, Feng YQ, Yuan BF. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Anal Chem. 2015;87(6):3445–52. Xiong J, Ye TT, Ma CJ, Cheng QY, Yuan BF, Feng YQ. N-6-Hydroxymethyladenine: a hydroxylation derivative of N-6-methyladenine in genomic DNA of mammals. Nucleic Acids Rese. 2019;47(3):1268–77. Hong Q, Li C, Ying R, Lin H, Li J, Zhao Y, Cheng H, Zhou R. Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish. Protein Cell. 2018;10(5):347–64. Feng Y, Xie N-B, Tao W-B, Ding J-H, You X-J, Ma C-J, Zhang X, Yi C, Zhou X, Yuan B-F, et al. Transformation of 5-Carboxylcytosine to Cytosine Through C-C Bond Cleavage in Human Cells Constitutes a Novel Pathway for DNA Demethylation. CCS Chemistry. 2020. https://doi.org/10.31635/ccschem.020.202000286. Hou Y, Yuan J, Zhou X, Fu X, Cheng H, Zhou R. DNA demethylation and USF regulate the meiosis-specific expression of the mouse Miwi. PLoS Genet. 2012;8(5):e1002716. Zhang Y, Zhang S, Liu Z, Zhang L, Zhang W. Epigenetic modifications during sex change repress gonadotropin stimulation of cyp19a1a in a teleost ricefield eel (Monopterus albus). Endocrinology. 2013;154(8):2881–90. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranašić D, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48(D1):D87–92. Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18(2):333–4. Farré D, Roset R, Huerta M, Adsuara JE, Roselló L, Albà MM, Messeguer X. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003;31(13):3651–3. Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol. 2007;21(3):712–25. Rajakumar A, Senthilkumaran B. Steroidogenesis and its regulation in teleost-a review. Fish Physiol Biochem. 2020;46(3):803–18. Jain D, Meydan C, Lange J, Claeys Bouuaert C, Lailler N, Mason CE, Anderson KV, Keeney S. rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLoS Genet. 2017;13(8):e1006964. Campos C, Valente LM, Fernandes JM. Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development. Gene. 2012;500(1):93–100. Zhang Y, Sun X, Zhang L, Zhang W. Testicular Dnmt3 expression and global DNA methylation are down-regulated by gonadotropin releasing hormones in the ricefield eel Monopterus albus. Sci Rep. 2017;7:43158. Cheng Y, Shang D, Luo M, Huang C, Lai F, Wang X, Xu X, Ying R, Wang L, Zhao Y, et al. Whole genome-wide chromosome fusion and new gene birth in the Monopterus albus genome. Cell Biosci. 2020;10:67. Mattiske D, Kume T, Hogan BL. The mouse forkhead gene Foxc1 is required for primordial germ cell migration and antral follicle development. Dev Biol. 2006;290(2):447–58. Eo J, Han K. K MM, Song H, Lim HJ: Etv5, an ETS transcription factor, is expressed in granulosa and cumulus cells and serves as a transcriptional regulator of the cyclooxygenase-2. J Endocrinol. 2008;198(2):281–90.