DNA manipulators: caught in the act

Current Opinion in Structural Biology - Tập 13 - Trang 15-22 - 2003
Anita Changela1, Kay Perry1, Bhupesh Taneja1, Alfonso Mondragón1
1Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208-3500, USA

Tài liệu tham khảo

Sadowski, 1986, Site-specific recombinases: changing partners and doing the twist, J. Bacteriol., 165, 341, 10.1128/jb.165.2.341-347.1986 Stark, 1992, Catalysis by site-specific recombinases, Trends Genet., 8, 432, 10.1016/0168-9525(92)90176-5 Grainge, 1999, The integrase family of recombinase: organization and function of the active site, Mol. Microbiol., 33, 449, 10.1046/j.1365-2958.1999.01493.x Pan, 2001, Solution structure of the catalytic domain of γδ resolvase. Implications for the mechanism of catalysis, J. Mol. Biol., 310, 1089, 10.1006/jmbi.2001.4821 Sarkis, 2001, A model for the γδ resolvase synaptic complex, Mol. Cell., 8, 623, 10.1016/S1097-2765(01)00334-3 Van Duyne, 2001, A structural view of Cre–loxP site-specific recombination, Annu. Rev. Biophys. Biomol. Struct., 30, 87, 10.1146/annurev.biophys.30.1.87 Chen, 2000, Crystal structure of a Flp recombinase–Holliday junction complex: assembly of an active oligomer by helix swapping, Mol. Cell., 6, 885, 10.1016/S1097-2765(00)00086-1 Martin, 2002, The order of strand exchanges in Cre–loxP recombination and its basis suggested by the crystal structure of a Cre–loxP Holliday junction complex, J. Mol. Biol., 319, 107, 10.1016/S0022-2836(02)00246-2 Woods, 2001, Quasi-equivalence in site-specific recombinase structure and function: crystal structure and activity of trimeric Cre recombinase bound to a three-way Lox DNA junction, J. Mol. Biol., 313, 49, 10.1006/jmbi.2001.5012 Grainge, 2002, Symmetric DNA sites are functionally asymmetric within Flp and Cre site-specific DNA recombination synapses, J. Mol. Biol., 320, 515, 10.1016/S0022-2836(02)00517-X Singleton, 2002, Modularity and specialization in superfamily 1 and 2 helicases, J. Bacteriol., 184, 1819, 10.1128/JB.184.7.1819-1826.2002 Caruthers, 2002, Helicase structure and mechanism, Curr. Opin. Struct. Biol., 12, 123, 10.1016/S0959-440X(02)00298-1 Velankar, 1999, Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism, Cell, 97, 75, 10.1016/S0092-8674(00)80716-3 Dillingham, 2000, Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed, Biochemistry, 39, 205, 10.1021/bi992105o Dillingham, 2002, Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine, Biochemistry, 41, 643, 10.1021/bi011137k Soultanas, 2000, Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism, EMBO J., 19, 3799, 10.1093/emboj/19.14.3799 Singleton, 2001, Structural analysis of DNA replication fork reversal by RecG, Cell, 107, 79, 10.1016/S0092-8674(01)00501-3 Ariyoshi, 2000, Crystal structure of the Holliday junction DNA in complex with a single RuvA tetramer, Proc. Natl. Acad. Sci. USA, 97, 8257, 10.1073/pnas.140212997 Rice, 2001, Comparative architecture of transposase and integrase complexes, Nat. Struct. Biol., 8, 302, 10.1038/86166 Davies, 2000, Three-dimensional structure of the Tn5 synaptic complex transposition intermediate, Science, 289, 77, 10.1126/science.289.5476.77 Lovell, 2002, Two-metal active site binding of a Tn5 transposase synaptic complex, Nat. Struct. Biol., 9, 278, 10.1038/nsb778 Wang, 2001, Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein, EMBO J., 20, 7333, 10.1093/emboj/20.24.7333 Champoux, 2001, DNA topoisomerases: structure, function, and mechanism, Annu. Rev. Biochem., 70, 369, 10.1146/annurev.biochem.70.1.369 Wang, 2002, Cellular roles of DNA topoisomerases: a molecular perspective, Nat. Rev. Mol. Cell. Biol., 3, 430, 10.1038/nrm831 Sherratt, 1998, Conserved themes but novel activities in recombinases and topoisomerases, Cell, 93, 149, 10.1016/S0092-8674(00)81566-4 Li, 2001, The mechanism of type IA topoisomerase-mediated DNA topological transformations, Mol. Cell., 7, 301, 10.1016/S1097-2765(01)00178-2 Changela, 2001, Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule, Nature, 411, 1077, 10.1038/35082615 Chen, 1998, Identification of active site residues in Escherichia coli DNA topoisomerase I, J. Biol. Chem., 273, 6050, 10.1074/jbc.273.11.6050 Zhu, 1998, Site-directed mutagenesis of conserved aspartates, glutamates and arginines in the active site region of Escherichia coli DNA topoisomerase I, J. Biol. Chem., 273, 8783, 10.1074/jbc.273.15.8783 Dekker, 2002, The mechanism of type IA topoisomerases, Proc. Natl. Acad. Sci. USA, 99, 12126, 10.1073/pnas.132378799 Crisona, 2000, Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements, Genes Dev., 14, 2881, 10.1101/gad.838900 Strick, 2000, Single-molecule analysis of DNA uncoiling by a type II topoisomerase, Nature, 404, 901, 10.1038/35009144 Rodriguez, 2002, Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA, EMBO J., 21, 418, 10.1093/emboj/21.3.418 Rodriguez, 2002, Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional “latch” in the mechanism of reverse gyrase, J. Biol. Chem., 277, 29865, 10.1074/jbc.M202853200 Guo, 1999, Asymmetric DNA bending in the Cre–loxP site-specific recombination synapse, Proc. Natl. Acad. Sci. USA, 96, 7143, 10.1073/pnas.96.13.7143 Guo, 1997, Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse, Nature, 389, 40, 10.1038/37925 Gopaul, 1998, Structure of the Holliday junction intermediate in Cre–loxP site-specific recombination, EMBO J., 17, 4175, 10.1093/emboj/17.14.4175 Mondragon, 1999, The structure of Escherichia coli DNA topoisomerase III, Struct. Fold Des., 7, 1373, 10.1016/S0969-2126(00)80027-1 Lima, 1994, Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I, Nature, 367, 138, 10.1038/367138a0 Feinberg, 1999, Conformational changes in E. coli DNA topoisomerase I, Nat. Struct. Biol., 6, 918, 10.1038/13283