DNA hypermethylation of PTPN22 gene promoter in children and adolescents with Hashimoto thyroiditis

Journal of Endocrinological Investigation - Tập 44 - Trang 2131-2138 - 2020
I. Kyrgios1, S. Giza1, A. Fragou2, G. Tzimagiorgis2, A. Galli-Tsinopoulou3
14th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
32nd Department of Pediatrics, AHEPA General University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Tóm tắt

Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is an inhibitor of T-cell activation, regulating intracellular signal transduction and thereby being implicated in the pathogenesis of autoimmune thyroid disease (AITD). The exact molecular mechanisms have not been fully elucidated. The aim of the present study was to quantitate DNA methylation within the PTPN22 gene promoter in children and adolescents with AITD and healthy controls. 60 Patients with Hashimoto thyroiditis (HT), 25 patients with HT and type 1 diabetes (HT + T1D), 9 patients with Graves’ disease (GD) and 55 healthy controls without any individual or family history of autoimmune disease were enrolled. Whole blood DNA extraction, DNA modification using sodium bisulfate and quantification of DNA methylation in the PTPN22 gene promoter, based on melting curve analysis of the selected DNA fragment using a Real-Time PCR assay, were implemented. DNA methylation in the PTPN22 gene promoter was found to be significantly higher in HT patients (39.9 ± 3.1%) in comparison with other study groups (20.3 ± 2.4% for HT + T1D, 32.6 ± 7.8% for GD, 27.1 ± 2.4% for controls, p < 0.001). PTPN22 gene promoter DNA methylation was also associated marginally with thyroid autoimmunity in general (p = 0.059), as well as considerably with thyroid volume (p = 0.004) and the presence of goiter (p = 0.001) but not thyroid function tests. This study demonstrates for the first time that a relationship between autoimmune thyroiditis and PTPN22 gene promoter DNA methylation state is present, thus proposing another possible etiological association between thyroiditis and abnormalities of PTPN22 function. Further expression studies are required to confirm these findings.

Tài liệu tham khảo

Coppedè F (2017) Epigenetics and autoimmune thyroid diseases. Front Endocrinol (Lausanne) 8:149. https://doi.org/10.3389/fendo.2017.00149 Effraimidis G, Wiersinga WM (2014) Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol 170(6):R241–R252. https://doi.org/10.1530/EJE-14-0047 Tomer Y (2014) Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. Annu Rev Pathol 9:147–156. https://doi.org/10.1146/annurev-pathol-012513-104713 Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. https://doi.org/10.1038/nrg3230 Fournier A, Sasai N, Nakao M, Defossez PA (2012) The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics 11(3):251–264. https://doi.org/10.1093/bfgp/elr040 Cohen S, Dadi H, Shaoul E, Sharfe N, Roifman CM (1999) Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93(6):2013–2024 Mustelin T, Bottini N, Stanford SM (2019) The contribution of PTPN22 to rheumatic disease. Arthritis Rheumatol 71(4):486–495. https://doi.org/10.1002/art.40790 Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP (2011) Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett 585(23):3689–3698. https://doi.org/10.1016/j.febslet.2011.04.032 Simera I, Moher D, Hoey J, Schulz KF, Altman DG (2010) A catalogue of reporting guidelines for health research. Eur J Clin Investig 40(1):35–53. https://doi.org/10.1111/j.1365-2362.2009.02234.x Caturegli P, De Remigis A, Rose NR (2014) Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev 13(4–5):391–397. https://doi.org/10.1016/j.autrev.2014.01.007 Mayer-Davis EJ, Kahkoska AR, Jefferies C, Dabelea D, Balde N, Gong CX, Aschner P, Craig ME (2018) ISPAD Clinical Practice Consensus Guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes 19(Suppl 27):7–19. https://doi.org/10.1111/pedi.12773 Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST (2012) Age-associated DNA methylation in pediatric populations. Genome Res 22(4):623–632. https://doi.org/10.1101/gr.125187.111 The Children’s Hospital of Philadelphia: Research Institute Pediatric Z-Score Calculator. https://zscore.research.chop.edu/. Accessed 8 March 2020 Ma J, Dempsey AA, Stamatiou D, Marshall KW, Liew CC (2007) Identifying leukocyte gene expression patterns associated with plasma lipid levels in human subjects. Atherosclerosis 191(1):63–72. https://doi.org/10.1016/j.atherosclerosis.2006.05.032 Wettinger SB, Doggen CJ, Spek CA, Rosendaal FR, Reitsma PH (2005) High throughput mRNA profiling highlights associations between myocardial infarction and aberrant expression of inflammatory molecules in blood cells. Blood 105(5):2000–2006. https://doi.org/10.1182/blood-2004-08-3283 Smith E, Jones ME, Drew PA (2009) Quantitation of DNA methylation by melt curve analysis. BMC Cancer 9:123. https://doi.org/10.1186/1471-2407-9-123 Arroyo-Jousse V, Garcia-Diaz DF, Codner E, Pérez-Bravo F (2016) Epigenetics in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients with type 1 diabetes mellitus. Br J Nutr 116(11):1861–1868. https://doi.org/10.1017/S0007114516003846 Kyrgios I, Fragou A, Kotanidou EP, Mouzaki K, Efraimidou S, Tzimagiorgis G, Galli-Tsinopoulou A (2020) DNA methylation analysis within the IL2RA gene promoter in youth with autoimmune thyroid disease. Eur J Clin Investig 50(3):e13199. https://doi.org/10.1111/eci.13199 The Li Lab MethPrimer. https://www.urogene.org/methprimer/. Accessed 8 March 2020 Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431. https://doi.org/10.1093/bioinformatics/18.11.1427 The UCSC Genomics Institute Genome Browser. https://genome.ucsc.edu/index.html. Accessed 8 March 2020 Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel). https://doi.org/10.3390/biology5010003 Lorente A, Mueller W, Urdangarín E, Lázcoz P, von Deimling A, Castresana JS (2008) Detection of methylation in promoter sequences by melting curve analysis-based semiquantitative real time PCR. BMC Cancer 8:61. https://doi.org/10.1186/1471-2407-8-61 Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35(6):e41. https://doi.org/10.1093/nar/gkm013 Amornpisutt R, Sriraksa R, Limpaiboon T (2012) Validation of methylation-sensitive high resolution melting for the detection of DNA methylation in cholangiocarcinoma. Clin Biochem 45(13–14):1092–1094. https://doi.org/10.1016/j.clinbiochem.2012.04.027 The NCBI BLAST. https://blast.ncbi.nlm.nih.gov. Accessed 8 March 2020 Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43(4):207–213. https://doi.org/10.1093/ilar.43.4.207 Center for Biomathematics Biomath. https://www.biomath.info. Accessed 8 March 2020 Brčić L, Barić A, Gračan S, Brekalo M, Kaličanin D, Gunjača I, Torlak Lovrić V, Tokić S, Radman M, Škrabić V, Miljković A, Kolčić I, Štefanić M, Glavaš-Obrovac L, Lessel D, Polašek O, Zemunik T, Barbalić M, Punda A, Boraska Perica V (2019) Genome-wide association analysis suggests novel loci for Hashimoto’s thyroiditis. J Endocrinol Investig 42(5):567–576. https://doi.org/10.1007/s40618-018-0955-4 Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36(4):337–338. https://doi.org/10.1038/ng1323 Dultz G, Matheis N, Dittmar M, Röhrig B, Bender K, Kahaly GJ (2009) The protein tyrosine phosphatase non-receptor type 22 C1858T polymorphism is a joint susceptibility locus for immunthyroiditis and autoimmune diabetes. Thyroid 19(2):143–148. https://doi.org/10.1089/thy.2008.0301 Giza S, Goulas A, Gbandi E, Effraimidou S, Papadopoulou-Alataki E, Eboriadou M, Galli-Tsinopoulou A (2013) The role of PTPN22 C1858T gene polymorphism in diabetes mellitus type 1: first evaluation in Greek children and adolescents. Biomed Res Int 2013:721604. https://doi.org/10.1155/2013/721604 Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, Ball SG, James RA, Quinton R, Perros P, Pearce SH (2004) The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab 89(11):5862–5865. https://doi.org/10.1210/jc.2004-1108 Heward JM, Brand OJ, Barrett JC, Carr-Smith JD, Franklyn JA, Gough SC (2007) Association of PTPN22 haplotypes with Graves’ disease. J Clin Endocrinol Metab 92(2):685–690. https://doi.org/10.1210/jc.2006-2064 Lee YH, Rho YH, Choi SJ, Ji JD, Song GG, Nath SK, Harley JB (2007) The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxf) 46(1):49–56. https://doi.org/10.1093/rheumatology/kel170 Lefvert AK, Zhao Y, Ramanujam R, Yu S, Pirskanen R, Hammarstrom L (2008) PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol 197(2):110–113. https://doi.org/10.1016/j.jneuroim.2008.04.004 Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, Nika K, Tautz L, Taskén K, Cucca F, Mustelin T, Bottini N (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37(12):1317–1319. https://doi.org/10.1038/ng1673 Cai TT, Muhali FS, Song RH, Qin Q, Wang X, Shi LF, Jiang WJ, Xiao L, Li DF, Zhang JA (2015) Genome-wide DNA methylation analysis in Graves’ disease. Genomics 105(4):204–210. https://doi.org/10.1016/j.ygeno.2015.01.001 Limbach M, Saare M, Tserel L, Kisand K, Eglit T, Sauer S, Axelsson T, Syvänen AC, Metspalu A, Milani L, Peterson P (2016) Epigenetic profiling in CD4+ and CD8+ T cells from Graves’ disease patients reveals changes in genes associated with T cell receptor signaling. J Autoimmun 67:46–56. https://doi.org/10.1016/j.jaut.2015.09.006 Chandra A, Senapati S, Roy S, Chatterjee G, Chatterjee R (2018) Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin Epigenet 10(1):108. https://doi.org/10.1186/s13148-018-0541-9 Shalaby SM, Mackawy AMH, Atef DM, Atef RM, Saeed J (2019) Promoter methylation and expression of intercellular adhesion molecule 1 gene in blood of autoimmune thyroiditis patients. Mol Biol Rep 46(5):5345–5353. https://doi.org/10.1007/s11033-019-04990-6 Liu T, Sun J, Wang Z, Yang W, Zhang H, Fan C, Shan Z, Teng W (2017) Changes in the DNA methylation and hydroxymethylation status of the intercellular adhesion molecule 1 gene promoter in thyrocytes from autoimmune thyroiditis patients. Thyroid 27(6):838–845. https://doi.org/10.1089/thy.2016.0576 Morita E, Watanabe M, Inoue N, Hashimoto H, Haga E, Hidaka Y, Iwatani Y (2018) Methylation levels of the TNFA gene are different between Graves’ and Hashimoto’s diseases and influenced by the TNFA polymorphism. Autoimmunity 51(3):118–125. https://doi.org/10.1080/08916934.2018.1448078 Hashimoto H, Watanabe M, Inoue N, Hirai N, Haga E, Kinoshita R, Hidaka Y, Iwatani Y (2019) Association of IFNG gene methylation in peripheral blood cells with the development and prognosis of autoimmune thyroid diseases. Cytokine 123:154770. https://doi.org/10.1016/j.cyto.2019.154770 Xin Z, Hua L, Shi TT, Tuo X, Yang FY, Li Y, Cao X, Yang JK (2018) A genome-wide DNA methylation analysis in peripheral blood from patients identifies risk loci associated with Graves’ orbitopathy. J Endocrinol Investig 41(6):719–727. https://doi.org/10.1007/s40618-017-0796-6 Wojciechowska-Durczynska K, Krawczyk-Rusiecka K, Zygmunt A, Stawerska R, Lewinski A (2016) In children with autoimmune thyroiditis CTLA4 and FCRL3 genes—but not PTPN22—are overexpressed when compared to adults. Neuroendocrinol Lett 37(1):65–69 Tokić S, Štefanić M, Glavaš-Obrovac L, Kishore A, Navratilova Z, Petrek M (2018) miR-29a-3p/T-bet regulatory circuit is altered in T cells of patients with Hashimoto’s thyroiditis. Front Endocrinol (Lausanne) 9:264. https://doi.org/10.3389/fendo.2018.00264