DNA hybridisation sensors for product authentication and tracing: State of the art and challenges

South African Journal of Chemical Engineering - Tập 27 - Trang 16-34 - 2019
Gloria Ntombenhle Hlongwane1,2,3, David Dodoo-Arhin1,4, Daniel Wamwangi5, Michael Olawale Daramola2, Kapil Moothi3, Sunny Esayegbemu Iyuke2
1African Materials Science and Engineering Network (A Carnegie-IAS RISE Network), South Africa
2School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Wits, 2050, Johannesburg, South Africa
3Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa
4Department of Materials Science and Engineering, School of Engineering Sciences, University of Ghana, P.O. Box Lg 77, Legon-Accra, Ghana
5School of Physics, Faculty of Science, University of the Witwatersrand, Wits, 2050, Johannesburg, South Africa

Tài liệu tham khảo

Abd-Elsalam, 2003, Bioinformatic tools and guideline for PCR primer design, Afr. J. Biotechnol., 2, 91, 10.5897/AJB2003.000-1019 Abu-Salah, 2010, DNA-based applications in nanobiotechnology, BioMed Res. Int., 2010, 715295 Ahmed, 2013, Investigation of acute effects of graphene oxide on wastewater microbial community: a case study, J. Hazard Mater., 256, 33, 10.1016/j.jhazmat.2013.03.064 Ahmed, 2002, Detection of genetically modified organisms in foods, Trends Biotechnol., 20, 215, 10.1016/S0167-7799(01)01920-5 Akca, 2011, Competing interactions in DNA assembly on graphene, PloS One, 6, 10.1371/journal.pone.0018442 2016, 1 Allen, 2009, Honeycomb carbon: a review of graphene, Chem. Rev., 110, 132, 10.1021/cr900070d Angulo, 2007, Risk perception and consumer willingness to pay for certified beef in Spain, Food Qual. Prefer., 18, 1106, 10.1016/j.foodqual.2007.05.008 Anklam, 1999, The validation of methods based on polymerase chain reaction for the detection of genetically modified organisms in food, Anal. Chim. Acta, 393, 177, 10.1016/S0003-2670(98)00824-1 Annalakshmi, 2018, Novel electrochemical sensor for highly sensitive detection of adenine based on vanadium pentoxide nanofibers modified screen printed carbon electrode, Int. J. Electrochem. Sci., 13, 6218, 10.20964/2018.07.41 Artyukhin, 2006, Controlled electrostatic gating of carbon nanotube FET devices, Nano Lett., 6, 2080, 10.1021/nl061343j Ates, 2013, A review study of (bio) sensor systems based on conducting polymers, Mater. Sci. Eng. C, 33, 1853, 10.1016/j.msec.2013.01.035 Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872 Bardaki, 2011, Modeling the information completeness of object tracking systems, J. Strat. Inf. Syst., 20, 268, 10.1016/j.jsis.2011.03.004 Barua, 2018, Nanostructured MoS2-based advanced biosensors: a review, ACS Appl. Nano Mater., 1, 2, 10.1021/acsanm.7b00157 Berg, 2004, Trust in food in the age of mad cow disease: a comparative study of consumers' evaluation of food safety in Belgium, Britain and Norway, Appetite, 42, 21, 10.1016/S0195-6663(03)00112-0 Berger, 2006, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191, 10.1126/science.1125925 Bernholc, 2002, Mechanical and electrical properties of nanotubes, Annu. Rev. Mater. Res., 32, 347, 10.1146/annurev.matsci.32.112601.134925 Bo, 2011, A DNA biosensor based on graphene paste electrode modified with Prussian blue and chitosan, Analyst, 136, 1946, 10.1039/c1an15084g Bonanni, 2010, Use of nanomaterials for impedimetric DNA sensors: a review, Anal. Chim. Acta, 678, 7, 10.1016/j.aca.2010.08.022 Bora, 2013, Nucleic acid based biosensors for clinical applications, Biosens. J., 2, 1, 10.4172/2090-4967.1000104 Bülbül, 2015, Portable nanoparticle-based sensors for food safety assessment, Sensors, 15, 30736, 10.3390/s151229826 Cao, 2015, Imperceptible and ultraflexible p-type transistors and macroelectronics based on carbon nanotubes, ACS Nano, 10, 199, 10.1021/acsnano.5b02847 Carloni, 2011, 1 Chambers, 2013, Food scares in an uncertain world, J. Eur. Econ. Assoc., 11, 1432, 10.1111/jeea.12057 Chang, 2008, Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes, Electroanalysis: Int. J. Devoted Fund. Practical Aspect Electroanalysis, 20, 131, 10.1002/elan.200704023 Chen, 2010, Graphene-based materials in electrochemistry, Chem. Soc. Rev., 39, 3157, 10.1039/b923596e Chen, 2009, Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution, J. Am. Chem. Soc., 131, 9908, 10.1021/ja9041862 Chen, 2009, Ionic screening of charged-impurity scattering in graphene, Nano Lett., 9, 1621, 10.1021/nl803922m Chen, 2018, Gold nanoparticles: from synthesis, properties to their potential application as colorimetric sensors in food safety screening, Trends Food Sci. Technol., 78, 83, 10.1016/j.tifs.2018.05.027 Chen, 2016, Printed carbon nanotube electronics and sensor systems, Adv. Mater., 28, 4397, 10.1002/adma.201504958 Cho, 2017, Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control, Biosci. Rep., 37, 10.1042/BSR20160330 Clark, 1962, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci., 102, 29, 10.1111/j.1749-6632.1962.tb13623.x Clendenin, 2007, January. An aligned carbon nanotube biosensor for DNA detection, 1028 Comini, 2010, Metal oxide nanowires as chemical sensors, Mater. Today, 13, 36, 10.1016/S1369-7021(10)70126-7 Compton, 2010, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for arbon‐based materials, Small, 6, 711, 10.1002/smll.200901934 Cornelis, 2014, Heat transfer resistance as a tool to quantify hybridization efficiency of DNA on a nanocrystalline diamond surface, Diam. Relat. Mater., 48, 32, 10.1016/j.diamond.2014.06.008 Costa, 2012, Advances in vegetable oil authentication by DNA-based markers, Trends Food Sci. Technol., 26, 43, 10.1016/j.tifs.2012.01.009 Dandy, 2007, Array feature size influences nucleic acid surface capture in DNA microarrays, Proc. Natl. Acad. Sci. U. S. A., 104, 8223, 10.1073/pnas.0606054104 Das, 2008, Binding of nucleobases with single-walled carbon nanotubes: theory and experiment, Chem. Phys. Lett., 453, 266, 10.1016/j.cplett.2008.01.057 Davison, 2007, EU regulations on the traceability and detection of GMOs: difficulties in interpretation, implementation and compliance, CAB Rev.: Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., 2, 1, 10.1079/PAVSNNR20072077 Dean, 2006, Using unlabelled data to update classification rules with applications in food authenticity studies, J. Roy. Stat. Soc.: Series C (Appl. Stat.), 55, 1, 10.1111/j.1467-9876.2005.00526.x Dikin, 2007, Preparation and characterisation of graphene oxide, Nature, 448, 457460, 10.1038/nature06016 Domínguez-Renedo, 2007, Disposable electrochemical biosensors in microbiology, Talanta, 73, 202 Dong, 2010, Electrical detection of DNA hybridization with single‐base specificity using transistors based on CVD‐grown graphene sheets, Adv. Mater., 22, 1649, 10.1002/adma.200903645 Dooley, 1994, Nucleic acid probes for the food industry, Biotechnol. Adv., 12, 669, 10.1016/0734-9750(94)90008-6 Drummond, 2003, Electrochemical DNA sensors, Nat. Biotechnol., 21, 1192, 10.1038/nbt873 D'souza, 2001, Microbial biosensors, Biosens. Bioelectron., 16, 337, 10.1016/S0956-5663(01)00125-7 Du, 2012, Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization, Talanta, 88, 439, 10.1016/j.talanta.2011.10.054 Duch, 2011, Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung, Nano Lett., 11, 5201, 10.1021/nl202515a Dykman, 2012, Gold nanoparticles in biomedical applications: recent advances and perspectives, Chem. Soc. Rev., 41, 2256, 10.1039/C1CS15166E Eda, 2008, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 3, 270, 10.1038/nnano.2008.83 Elsanhoty, 2011, DNA extraction methods for detecting genetically modified foods: a comparative study, Food Chem., 126, 1883, 10.1016/j.foodchem.2010.12.013 Emtsev, 2009, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater., 8, 203, 10.1038/nmat2382 Feng, 2011, Graphene based gene transfection, Nanoscale, 3, 1252, 10.1039/c0nr00680g Fernandes, 2014, A multiplex nanoparticles-based DNA electrochemical biosensor for the simultaneous detection of Escherichia coli O157: H7 and Staphylococcus aureus, Int. J. Curr. Microbiol. Appl. Sci., 3, 750 Fiche, 2007, Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves, Biophys. J., 92, 935, 10.1529/biophysj.106.097790 Fu, 2010, Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene, 1, 5354 Gan, 2017, Two-dimensional MoS2: a promising building block for biosensors, Biosens. Bioelectron., 89, 56, 10.1016/j.bios.2016.03.042 Gao, 2012, The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors, Nanoscale, 4, 1948, 10.1039/c2nr11757f Gao, 2008, Electrochemical detection of DNA hybridization based on the probe labeled with carbon‐nanotubes loaded with silver nanoparticles, Electroanalysis: Int. J. Devoted Fund. Practical Aspect Electroanalysis, 20, 123, 10.1002/elan.200703998 Gao, 2006, Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison, Nucleic Acids Res., 34, 3370, 10.1093/nar/gkl422 Geim, 2009, Graphene: status and prospects, Science, 324, 1530, 10.1126/science.1158877 Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 Gibson, 2007, Vibrations of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 67, 1, 10.1016/j.compscitech.2006.03.031 Gifford, 2010, Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces, J. Am. Chem. Soc., 132, 9265, 10.1021/ja103043p Gill, 2006, Pt nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins, Small, 2, 1037, 10.1002/smll.200600133 Goda, 2013, Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes, Sensors, 13, 2267, 10.3390/s130202267 Gooding, 2002, Electrochemical DNA hybridization biosensors, Electroanalysis, 14, 1149, 10.1002/1521-4109(200209)14:17<1149::AID-ELAN1149>3.0.CO;2-8 Gowtham, 2007, Physisorption of nucleobases on graphene: density-functional calculations, Phys. Rev. B, 76, 10.1103/PhysRevB.76.033401 Green, 2015, Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review, Anal. Chim. Acta, 853, 127, 10.1016/j.aca.2014.10.023 Gu, 2007, Enhanced electrochemical detection of DNA hybridization based on Au/MWCNTs nanocomposites, Anal. Lett., 40, 3159, 10.1080/00032710701672533 Hahn, 2005, Nucleic acid based biosensors: the desires of the user, Bioelectrochemistry, 67, 151, 10.1016/j.bioelechem.2004.07.006 He, 2010, A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis, Adv. Funct. Mater., 20, 453, 10.1002/adfm.200901639 Heller, 2006, Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes, Science, 311, 508, 10.1126/science.1120792 Hinz, 2006, Process analytical technologies in the pharmaceutical industry: the FDA's PAT initiative, Anal. Bioanal. Chem., 384, 1036, 10.1007/s00216-005-3394-y Hong, 2011, An RFID application in the food supply chain: a case study of convenience stores in Taiwan, J. Food Eng., 106, 119, 10.1016/j.jfoodeng.2011.04.014 Hoyle, 2010, Thiol–ene click chemistry, Angew. Chem. Int. Ed., 49, 1540, 10.1002/anie.200903924 Hu, 2017, Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications, Mater. Chem. Front., 1, 24, 10.1039/C6QM00195E Husale, 2010, ssDNA binding reveals the atomic structure of graphene, Langmuir, 26, 18078, 10.1021/la102518t Hvastkovs, 2010, Recent advances in electrochemical DNA hybridization sensors, Analyst, 135, 1817, 10.1039/c0an00113a Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Izak, 2015, Diamond-coated field-effect sensor for DNA recognition—influence of material and morphology, Diam. Relat. Mater., 60, 87, 10.1016/j.diamond.2015.10.020 Jaakola, 2010, Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species, Food Chem., 123, 494, 10.1016/j.foodchem.2010.04.069 Jang, 2010, A graphene‐based platform for the assay of duplex‐DNA unwinding by helicase, Angew. Chem., 122, 5839, 10.1002/ange.201001332 Jeng, 2006, Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes, Nano Lett., 6, 371, 10.1021/nl051829k Jiang, 2018, Highly selective, reusable electrochemical impedimetric DNA sensors based on carbon nanotube/polymer composite electrode without surface modification, Biosens. Bioelectron., 118, 16, 10.1016/j.bios.2018.07.037 Jobling, 2004, Encoded evidence: DNA in forensic analysis, Nat. Rev. Genet., 5, 739, 10.1038/nrg1455 Jung, 2013, Highly tunable aptasensing microarrays with graphene oxide multilayers, Sci. Rep., 3, 10.1038/srep03367 Junker, 2006, Bioprocess monitoring and computer control: key roots of the current PAT initiative, Biotechnol. Bioeng., 95, 226, 10.1002/bit.21087 Kagan, 1994, Reduction of fluorescence interference in Raman spectroscopy via analyte adsorption on graphitic carbon, Anal. Chem., 66, 4159, 10.1021/ac00095a008 Karamollaoğlu, 2009, QCM-based DNA biosensor for detection of genetically modified organisms (GMOs), Biochem. Eng. J., 44, 142, 10.1016/j.bej.2008.11.011 Kergoat, 2010, A water‐gate organic field‐effect transistor, Adv. Mater., 22, 2565, 10.1002/adma.200904163 Kerman, 2003, Recent trends in electrochemical DNA biosensor technology, Meas. Sci. Technol., 15, R1, 10.1088/0957-0233/15/2/R01 Kim, 2005, Comparative study of herringbone and stacked-cup carbon nanofibers, Carbon, 43, 3005, 10.1016/j.carbon.2005.06.037 Kingsbury, 1987, DNA probes in the diagnosis of genetic and infectious diseases, Trends Biotechnol., 5, 107, 10.1016/0167-7799(87)90029-1 Koehne, 2009, Arrays of carbon nanofibers as a platform for biosensing at the molecular level and for tissue engineering and implantation, Bio Med. Mater. Eng., 19, 35, 10.3233/BME-2009-0561 Kruse, 1999, Globalization of the food supply–food safety implications: special regional requirements: future concerns, Food Contr., 10, 315, 10.1016/S0956-7135(99)00005-5 Kukkar, 2018, A comprehensive review on nano-molybdenum disulfide/DNA interfaces as emerging biosensing platforms, Biosens. Bioelectron., 107, 244, 10.1016/j.bios.2018.02.035 Kukovecz, 2013, Multi-walled carbon nanotubes, 147 Kumara, 2015, Cerium oxide nanostructures for bio-sensing application, Sci. Lett. J., 4, 1 Kwon, 2012, DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response, J. Am. Chem. Soc., 134, 10777, 10.1021/ja304074f Kybert, 2014, Scalable arrays of chemical vapor sensors based on DNA-decorated graphene, Nano Res., 7, 95, 10.1007/s12274-013-0376-9 Labuda, 2010, Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC Technical Report), Pure Appl. Chem., 82, 1161, 10.1351/PAC-REP-09-08-16 Lanphere, 2014, Stability and transport of graphene oxide nanoparticles in groundwater and surface water, Environ. Eng. Sci., 31, 350, 10.1089/ees.2013.0392 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996 Lee, 2004, Electrically addressable biomolecular functionalization of carbon nanotube and carbon nanofiber electrodes, Nano Lett., 4, 1713, 10.1021/nl048995x Lee, 2013, Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations, J. Phys. Chem. C, 117, 13435, 10.1021/jp402403f Lee, 2008, Over-the-counter biosensors: past, present, and future, Sensors, 8, 5535, 10.3390/s8095535 Lerner, 2012, Toward quantifying the electrostatic transduction mechanism in carbon nanotube molecular sensors, J. Am. Chem. Soc., 134, 14318, 10.1021/ja306363v Li, 2012, Electrochemical sensing of label free DNA hybridization related to breast cancer 1 gene at disposable sensor platforms modified with single walled carbon nanotubes, Electrochim. Acta, 82, 137, 10.1016/j.electacta.2012.05.057 Li, 2017, Functionalized multi-wall carbon nanotubes as an efficient additive for electrochemical DNA sensor, Sensor. Actuator. B Chem., 239, 652, 10.1016/j.snb.2016.08.068 Li, 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312, 10.1126/science.1171245 Liao, 2006, Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens, J. Clin. Microbiol., 44, 561, 10.1128/JCM.44.2.561-570.2006 Lin, 2013, Label‐Free Electrical detection of DNA hybridization on graphene using Hall Effect measurements: revisiting the sensing mechanism, Adv. Funct. Mater., 23, 2301, 10.1002/adfm.201202672 Lin, 2011, Organic electrochemical transistors integrated in flexible microfluidic systems and used for label‐free DNA sensing, Adv. Mater., 23, 4035, 10.1002/adma.201102017 Liu, 2015, Comprehensive screen of metal oxide nanoparticles for DNA adsorption, fluorescence quenching, and anion discrimination, ACS Appl. Mater. Interfaces, 7, 24833, 10.1021/acsami.5b08004 Liu, 2018, Janus DNA orthogonal adsorption of graphene oxide and metal oxide nanoparticles enabling stable sensing in serum, Mater. Horiz., 5, 65, 10.1039/C7MH00804J Liu, 2006, Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms, Anal. Chem., 78, 3838, 10.1021/ac0522409 Liu, 2010, Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer, Biosens. Bioelectron., 25, 2361, 10.1016/j.bios.2010.02.022 Liu, 2009, Nanomaterial-assisted signal enhancement of hybridization for DNA biosensors: a review, Sensors, 9, 7343, 10.3390/s90907343 Liu, 2013, Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor, Nat. Commun., 4, 2989, 10.1038/ncomms3989 Liu, 2011, Crystalline two‐dimensional DNA‐origami arrays, Angew. Chem., 123, 278, 10.1002/ange.201005911 Lockett, 2008, A tetrafluorophenyl activated ester self-assembled monolayer for the immobilization of amine-modified oligonucleotides, Langmuir, 24, 69, 10.1021/la702493u Loureiro, 2007, A choice experiment model for beef: what US consumer responses tell us about relative preferences for food safety, country-of-origin labeling and traceability, Food Pol., 32, 496, 10.1016/j.foodpol.2006.11.006 Lu, 2009, A graphene platform for sensing biomolecules, Angew. Chem., 121, 4879, 10.1002/ange.200901479 Lu, 2010, DNA-decorated graphene chemical sensors, Appl. Phys. Lett., 97, 10.1063/1.3483128 Lu, 2015, Electrospun nickel loaded porous carbon nanofibers for simultaneous determination of adenine and guanine, Electrochim. Acta, 174, 191, 10.1016/j.electacta.2015.05.165 Lucarelli, 2008, Electrochemical and piezoelectric DNA biosensors for hybridisation detection, Anal. Chim. Acta, 609, 139, 10.1016/j.aca.2007.12.035 Ludwig, 1995, Nucleic acid based detection systems for genetically modified bacteria, Syst. Appl. Microbiol., 18, 477, 10.1016/S0723-2020(11)80407-8 Lüthy, 1999, Detection strategies for food authenticity and genetically modified foods, Food Contr., 10, 359, 10.1016/S0956-7135(99)00075-4 Malmqvist, 1993, Biospecific interaction analysis using biosensor technology, Nature, 361, 186, 10.1038/361186a0 Mandal, 2018, Evolving trends in bio/chemical sensors fabrication incorporating bimetallic nanoparticles, Biosens. Bioelectron., 117, 546, 10.1016/j.bios.2018.06.039 Manna, 2013, Theoretical understanding of single-stranded DNA assisted dispersion of graphene, J. Mater. Chem. B, 1, 91, 10.1039/C2TB00184E Mascini, 2006, A brief story of biosensor technology, 4 Mascini, 2001, DNA electrochemical biosensors, Fresen. J. Anal. Chem., 369, 15, 10.1007/s002160000629 Mathur, 2009, Amplified electrochemical DNA-sensing of nanostructured metal oxide films deposited on disposable graphite electrodes functionalized by chemical vapor deposition, Sensor. Actuator. B Chem., 136, 432, 10.1016/j.snb.2008.11.049 Merkoçi, 2010, Nanoparticles-based strategies for DNA, protein and cell sensors, Biosens. Bioelectron., 26, 1164, 10.1016/j.bios.2010.07.028 Merkoçi, 2012, 1.2. 3 nanomaterials-based biosensors, 85 Millan, 1993, Sequence-selective biosensor for DNA based on electroactive hybridization indicators, Anal. Chem., 65, 2317, 10.1021/ac00065a025 Mohammed, 2017, Nanostructured ZnO-based biosensor: DNA immobilization and hybridization, 15, 46 Mohanty, 2008, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents, Nano Lett., 8, 4469, 10.1021/nl802412n Mukhopadhyay, 2010, Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials, Nanotechnology, 21, 165703, 10.1088/0957-4484/21/16/165703 Murphy, 2010, Variable selection and updating in model-based discriminant analysis for high dimensional data with food authenticity applications, Ann. Appl. Stat., 4, 396, 10.1214/09-AOAS279 Mustonen, 2015, Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors, Appl. Phys. Lett., 107, 143113, 10.1063/1.4932942 Nadzirah, 2015, Titanium dioxide nanoparticle-based interdigitated electrodes: a novel current to voltage DNA biosensor recognizes E. coli O157: H7, PloS One, 10, e0139766, 10.1371/journal.pone.0139766 Nandy, 2012, Interaction of nucleic acids with carbon nanotubes and dendrimers, J. Biosci., 37, 457, 10.1007/s12038-012-9220-8 Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109 Ngo, 2013, Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip, Anal. Chem., 85, 6378, 10.1021/ac400763c Nguyet, 2018, Highly sensitive DNA sensors based on cerium oxide nanorods, J. Phys. Chem. Solid., 115, 18, 10.1016/j.jpcs.2017.11.023 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Nugen, 2008, Trends and opportunities in food pathogen detection, Anal. Bioanal. Chem., 391, 451, 10.1007/s00216-008-1886-2 Odom, 2002, Single‐walled carbon nanotubes, Ann. N. Y. Acad. Sci., 960, 203, 10.1111/j.1749-6632.2002.tb03035.x Oliveira Brett, 2003, Atomic force microscopy of DNA immobilized onto a highly oriented pyrolytic graphite electrode surface, Langmuir, 19, 3830, 10.1021/la027047d Ozkan-Ariksoysal, 2017, DNA-wrapped multi-walled carbon nanotube modified electrochemical biosensor for the detection of Escherichia coli from real samples, Talanta, 166, 27, 10.1016/j.talanta.2017.01.005 Özkumur, 2010, Label-free microarray imaging for direct detection of DNA hybridization and single-nucleotide mismatches, Biosens. Bioelectron., 25, 1789, 10.1016/j.bios.2009.12.032 Park, 2016, M-DNA/transition metal dichalcogenide hybrid structure-based bio-FET sensor with ultra-high sensitivity, Sci. Rep., 6, 35733, 10.1038/srep35733 Passamano, 2006, QCM DNA-sensor for GMOs detection, Sensor. Actuator. B Chem., 118, 177, 10.1016/j.snb.2006.04.012 Pei, 2011, The China melamine milk scandal and its implications for food safety regulation, Food Pol., 36, 412, 10.1016/j.foodpol.2011.03.008 Pérez-López, 2011, Nanoparticles for the development of improved (bio) sensing systems, Anal. Bioanal. Chem., 399, 1577, 10.1007/s00216-010-4566-y Pfeiffer, 2008, Double-Wall carbon nanotubes, 495 Pinijsuwan, 2010, Attomolar electrochemical detection of DNA hybridization based on enhanced latex/gold nanoparticles, Adv. Eng. Mater., 12, B649, 10.1002/adem.201080039 Popping, 2002, The application of biotechnological methods in authenticity testing, J. Biotechnol., 98, 107, 10.1016/S0168-1656(02)00089-5 Power, 2017, Carbon nanomaterials and their application to electrochemical sensors; a review, Nanotechnol. Rev., 7, 19, 10.1515/ntrev-2017-0160 Primo, 2014, Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA, Bioelectrochemistry, 99, 8, 10.1016/j.bioelechem.2014.05.002 Primrose, 2010, Food forensics: methods for determining the authenticity of foodstuffs, Trends Food Sci. Technol., 21, 582, 10.1016/j.tifs.2010.09.006 Qin, 2018, “Gold rush” in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing, Coord. Chem. Rev., 359, 1, 10.1016/j.ccr.2018.01.006 Rao, 2009, Graphene: the new two‐dimensional nanomaterial, Angew. Chem. Int. Ed., 48, 7752, 10.1002/anie.200901678 Rasheed, 2017, Carbon nanostructures as immobilization platform for DNA: a review on current progress in electrochemical DNA sensors, Biosens. Bioelectron., 97, 226, 10.1016/j.bios.2017.06.001 Reid, 2006, Recent technological advances for the determination of food authenticity, Trends Food Sci. Technol., 17, 344, 10.1016/j.tifs.2006.01.006 Reina, 2008, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9, 30, 10.1021/nl801827v Richards, 1991, Gene probes, Curr. Opin. Biotechnol., 2, 76, 10.1016/0958-1669(91)90064-C Robinson, 2012, Authenticity and festival foodservice experiences, Ann. Tourism Res., 39, 571, 10.1016/j.annals.2011.06.007 Saccà, 2012, DNA origami: the art of folding DNA, Angew. Chem. Int. Ed., 51, 58, 10.1002/anie.201105846 Saha, 2012, Gold nanoparticles in chemical and biological sensing, Chem. Rev., 112, 2739, 10.1021/cr2001178 Sapountzi, 2017, Recent advances in electrospun nanofiber interfaces for biosensing devices, Sensors, 17, 1887, 10.3390/s17081887 Schilter, 2002, Regulatory control of genetically modified (GM) foods: likely developments, Toxicol. Lett., 127, 341, 10.1016/S0378-4274(01)00518-5 Schügerl, 2001, Progress in monitoring, modeling and control of bioprocesses during the last 20 years, J. Biotechnol., 85, 149, 10.1016/S0168-1656(00)00361-8 Shimron, 2013, Metal nanoparticle-functionalized DNA tweezers: from mechanically programmed nanostructures to switchable fluorescence properties, Nano Lett., 13, 3791, 10.1021/nl4017539 Shrestha, 2010, Advances in detection of genetically engineered crops by multiplex polymerase chain reaction methods, Trends Food Sci. Technol., 21, 442, 10.1016/j.tifs.2010.06.004 Siddiquee, 2010, Electrochemical DNA biosensor for the detection of specific gene related to Trichoderma harzianum species, Bioelectrochemistry, 79, 31, 10.1016/j.bioelechem.2009.10.004 Singhal, 2018, Detection of chikungunya virus DNA using two-dimensional MoS 2 nanosheets based disposable biosensor, Sci. Rep., 8, 7734, 10.1038/s41598-018-25824-8 Skotadis, 2016, Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies, Biosens. Bioelectron., 81, 388, 10.1016/j.bios.2016.03.028 Solanki, 2011, Nanostructured metal oxide-based biosensors, NPG Asia Mater., 3, 17, 10.1038/asiamat.2010.137 Song, 2010, Trade effects and compliance costs of food safety regulations: the case of China, 1, 429 Song, 2006, Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution, Phys. Rev., 74 Spadavecchia, 2005, Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis, Biosens. Bioelectron., 21, 894, 10.1016/j.bios.2005.02.016 Stampfer, 2008, Tunable graphene single electron transistor, Nano Lett., 8, 2378, 10.1021/nl801225h Star, 2006, Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors, Proc. Natl. Acad. Sci. Unit. States Am., 103, 921, 10.1073/pnas.0504146103 Sutter, 2008, Epitaxial graphene on ruthenium, Nat. Mater., 7, 406, 10.1038/nmat2166 Tam, 2009, DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection, J. Immunol. Methods, 350, 118, 10.1016/j.jim.2009.08.002 Tang, 2011, DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay, ACS Nano, 5, 3817, 10.1021/nn200147n Tang, 2006, Carbon nanotube DNA sensor and sensing mechanism, Nano Lett., 6, 1632, 10.1021/nl060613v Tang, 2010, Constraint of DNA on functionalized graphene improves its biostability and specificity, Small, 6, 1205, 10.1002/smll.201000024 Teles, 2008, Applications of polymers for biomolecule immobilization in electrochemical biosensors, Mater. Sci. Eng. C, 28, 1530, 10.1016/j.msec.2008.04.010 Thévenot, 2001, Electrochemical biosensors: recommended definitions and classification, Biosens. Bioelectron., 16, 121, 10.1016/S0956-5663(01)00115-4 Torkel, 1959, Rca corp Tran, 2017, Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor, Phys. E Low-dimens. Syst. Nanostruct., 93, 83, 10.1016/j.physe.2017.05.019 Trevors, 1985, DNA probes for the detection of specific genes in bacteria isolated from the environment, Trends Biotechnol., 3, 291, 10.1016/0167-7799(85)90005-8 Vamvakaki, 2007, Electrochemical biosensing systems based on carbon nanotubes and carbon nanofibers, Anal. Lett., 40, 2271, 10.1080/00032710701575520 Van Nguyen, 2015, DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor, Chem. Commun., 51, 4782, 10.1039/C4CC10250A Varghese, 2009, Binding of DNA nucleobases and nucleosides with graphene, ChemPhysChem, 10, 206, 10.1002/cphc.200800459 Velasco-Garcia, 2003, Biosensor technology addressing agricultural problems, Biosyst. Eng., 84, 1, 10.1016/S1537-5110(02)00236-2 Velusamy, 2010, An overview of foodborne pathogen detection: in the perspective of biosensors, Biotechnol. Adv., 28, 232, 10.1016/j.biotechadv.2009.12.004 Verbeke, 2006, Consumer interest in information cues denoting quality, traceability and origin: an application of ordered probit models to beef labels, Food Qual. Prefer., 17, 453, 10.1016/j.foodqual.2005.05.010 Vermeeren, 2007, Towards a real-time, label-free, diamond-based DNA sensor, Langmuir, 23, 13193, 10.1021/la702143d Vermeeren, 2009, DNA sensors with diamond as a promising alternative transducer material, Sensors, 9, 5600, 10.3390/s90705600 Vigneshvar, 2016, Recent advances in biosensor technology for potential applications–an overview, Front. Bioeng. Biotechnol., 4, 1 Vo-Dinh, 2004, Nanobiosensors, vol. 5, 53 Walls, 2005, Use of food safety objectives as a tool for reducing foodborne listeriosis, Food Contr., 16, 795, 10.1016/j.foodcont.2004.10.019 Wang, 2015, Enhanced performance of nanocrystalline ZnO DNA biosensor via introducing electrochemical covalent biolinkers, ACS Appl. Mater. Interfaces, 7, 7605, 10.1021/acsami.5b00040 Wang, 2012, DNA microarray fabricated on poly (acrylic acid) brushes-coated porous silicon by in situ rolling circle amplification, Analyst, 137, 4539, 10.1039/c2an35417a Wang, 2008, Functionalized carbon nanotubes and nanofibers for biosensing applications, Trac. Trends Anal. Chem., 27, 619, 10.1016/j.trac.2008.05.009 Wang, 1999, PNA biosensors for nucleic acid detection, Curr. Issues Mol. Biol., 1, 117 Wang, 2000, Survey and summary from DNA biosensors to gene chips, Nucleic Acids Res., 28, 3011, 10.1093/nar/28.16.3011 Wang, 1997, DNA electrochemical biosensors for environmental monitoring. A review, Anal. Chim. Acta, 347, 1, 10.1016/S0003-2670(96)00598-3 Wang, 2013, Surface modification for Protein and DNA immobilization onto GMR biosensor, IEEE Trans. Magn., 49, 296, 10.1109/TMAG.2012.2224327 Wang, 2017, Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review, Biosens. Bioelectron., 97, 305, 10.1016/j.bios.2017.06.011 Wang, 2011, Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes, Biosens. Bioelectron., 26, 3881, 10.1016/j.bios.2011.03.002 Wenmackers, 2003, Covalent immobilization of DNA on CVD diamond films, Phys. Status Solidi, 199, 44, 10.1002/pssa.200303822 Wenmackers, 2009, Diamond‐based DNA sensors: surface functionalization and read‐out strategies, Phys. Status Solidi, 206, 391, 10.1002/pssa.200880486 Wetmur, 1991, DNA probes: applications of the principles of nucleic acid hybridization, Crit. Rev. Biochem. Mol. Biol., 26, 227, 10.3109/10409239109114069 Wolcott, 1992, Advances in nucleic acid-based detection methods, Clin. Microbiol. Rev., 5, 370, 10.1128/CMR.5.4.370 Wong, 1990, DNA technology, Am. J. Surg., 159, 610, 10.1016/S0002-9610(06)80080-2 Wu, 2010, A reagentless DNA biosensor based on cathodic electrochemiluminescence at a C/C x O 1− x electrode, Talanta, 81, 934, 10.1016/j.talanta.2010.01.040 Wu, 2009, Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor, Biosens. Bioelectron., 25, 820, 10.1016/j.bios.2009.08.031 Wu, 2011, Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides, Langmuir, 27, 2731, 10.1021/la1037926 Wu, 2014, From nonfinite to finite 1D arrays of origami tiles, Acc. Chem. Res., 47, 1750, 10.1021/ar400330y Xie, 2009, Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy, J. Am. Chem. Soc., 131, 9890, 10.1021/ja9037593 Xiu-Ling, 2008, Application of electrochemical biosensors in fermentation, Chin. J. Anal. Chem., 36, 1749, 10.1016/S1872-2040(09)60012-8 Yan, 2017, MoS 2-DNA and MoS 2 based sensors, RSC Adv., 7, 23573, 10.1039/C7RA02649H Yang, 2015, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review, Anal. Chim. Acta, 887, 17, 10.1016/j.aca.2015.05.049 Yang, 2009, DNA-sensing with nano-textured diamond electrodes, Diam. Relat. Mater., 18, 592, 10.1016/j.diamond.2008.08.007 Yang, 2009, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing, Phys. Status Solidi, 206, 2048, 10.1002/pssa.200982222 Yang, 2004, Interfacial electrical properties of DNA-modified diamond thin films: intrinsic response and hybridization-induced field effects, Langmuir, 20, 6778, 10.1021/la036460y Yang, 2007, DNA electrochemical sensor based on an adduct of single-walled carbon nanotubes and ferrocene, Biotechnol. Lett., 29, 1775, 10.1007/s10529-007-9450-2 Yapp, 2006, Factors affecting food safety compliance within small and medium-sized enterprises: implications for regulatory and enforcement strategies, Food Contr., 17, 42, 10.1016/j.foodcont.2004.08.007 Yin, 2012, Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors, Nanoscale, 4, 293, 10.1039/C1NR11149C Yogeswaran, 2008, Recent updates of DNA incorporated in carbon nanotubes and nanoparticles for electrochemical sensors and biosensors, Sensors, 8, 7191, 10.3390/s8117191 Yola, 2014, A novel and sensitive electrochemical DNA biosensor based on Fe@ Au nanoparticles decorated graphene oxide, Electrochim. Acta, 125, 38, 10.1016/j.electacta.2014.01.074 Yumak, 2011, Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization, Colloids Surfaces B Biointerfaces, 86, 397, 10.1016/j.colsurfb.2011.04.030 Zach, 2012, Systems and governance in food import safety: a US perspective, Food Contr., 27, 153, 10.1016/j.foodcont.2012.03.013 Zhang, 2014, Large-scale production of high-quality graphene using glucose and ferric chloride, Chem. Sci., 5, 4656, 10.1039/C4SC01950D Zhang, 2011, Applications of carbon nanotubes to electrochemical DNA sensors: a new strategy to make direct and selective hybridization detection from SWNTs, Adv. Nat. Sci. Nanosci. Nanotechnol., 1, 045011, 10.1088/2043-6262/1/4/045011 Zhang, 2008, Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene, J. Membr. Sci., 325, 245, 10.1016/j.memsci.2008.07.038 Zhang, 2014, DNA molecules site-specific immobilization and their applications, Open Chemistry, 12, 977, 10.2478/s11532-014-0557-8 Zhang, 2010, A sensitive DNA biosensor fabricated with gold nanoparticles/ploy (p-aminobenzoic acid)/carbon nanotubes modified electrode, Colloids Surfaces B Biointerfaces, 75, 179, 10.1016/j.colsurfb.2009.08.030 Zhang, 2009, Electrochemical DNA biosensor based on silver nanoparticles/poly (3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode, Anal. Biochem., 387, 13, 10.1016/j.ab.2008.10.043 Zhang, 2015, Single‐layer transition metal dichalcogenide nanosheet‐based nanosensors for rapid, sensitive, and multiplexed detection of DNA, Adv. Mater., 27, 935, 10.1002/adma.201404568 Zhou, 2009, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem., 81, 5603, 10.1021/ac900136z Zhou, 2015, 60 Zhou, 2004, Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles, Anal. Chem., 76, 5302, 10.1021/ac049472c Zhu, 2013, Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules, J. Am. Chem. Soc., 135, 5998, 10.1021/ja4019572 Zhu, 2005, Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes, Anal. Chim. Acta, 545, 21, 10.1016/j.aca.2005.04.015 Zhu, 2006, Magnetic nanoparticles applied in electrochemical detection of controllable DNA hybridization, Anal. Chem., 78, 2447, 10.1021/ac051962x