DNA Replication Is the Target for the Antibacterial Effects of Nonsteroidal Anti-Inflammatory Drugs

Chemistry & Biology - Tập 21 - Trang 481-487 - 2014
Zhou Yin1, Yao Wang1, Louise R. Whittell1, Slobodan Jergic1, Michael Liu2, Elizabeth Harry2, Nicholas E. Dixon1, Michael J. Kelso1, Jennifer L. Beck1, Aaron J. Oakley1
1School of Chemistry and Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
2iThree institute, University of Technology, Sydney, NSW 2007, Australia

Tài liệu tham khảo

Al-Janabi, 2010, In vitro antibacterial activity of ibuprofen and acetaminophen, J Glob Infect Dis, 2, 105, 10.4103/0974-777X.62880 Argiriadi, 2006, Crystal structure of a DNA polymerase sliding clamp from a gram-positive bacterium, BMC Struct. Biol., 6, 2, 10.1186/1472-6807-6-2 Bassetti, 2013, New antibiotics for bad bugs: where are we?, Ann. Clin. Microbiol. Antimicrob., 12, 22, 10.1186/1476-0711-12-22 Bechara, 2013, Cell-penetrating peptides: 20 years later, where do we stand?, FEBS Lett., 587, 1693, 10.1016/j.febslet.2013.04.031 Beck, 2006, Proteomic dissection of DNA polymerization, Expert Rev. Proteomics, 3, 197, 10.1586/14789450.3.2.197 Bertolacci, 2013, A binding site for nonsteroidal anti-inflammatory drugs in fatty acid amide hydrolase, J. Am. Chem. Soc., 135, 22, 10.1021/ja308733u Bunting, 2003, Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β-clamp, EMBO J., 22, 5883, 10.1093/emboj/cdg568 Burnouf, 2004, Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases, J. Mol. Biol., 335, 1187, 10.1016/j.jmb.2003.11.049 2009 Dalrymple, 2001, A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems, Proc. Natl. Acad. Sci. USA, 98, 11627, 10.1073/pnas.191384398 Dinarello, 2010, Anti-inflammatory agents: Present and future, Cell, 140, 935, 10.1016/j.cell.2010.02.043 Elitok, 2004, Clinical efficacy of carprofen as an adjunct to the antibacterial treatment of bovine respiratory disease, J. Vet. Pharmacol. Ther., 27, 317, 10.1111/j.1365-2885.2004.00589.x Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr., 60, 2126, 10.1107/S0907444904019158 Flanagan, 2012, Crystal structures of three classes of non-steroidal anti-inflammatory drugs in complex with aldo-keto reductase 1C3, PLoS ONE, 7, e43965, 10.1371/journal.pone.0043965 Georgescu, 2008, Structure of a small-molecule inhibitor of a DNA polymerase sliding clamp, Proc. Natl. Acad. Sci. USA, 105, 11116, 10.1073/pnas.0804754105 Gonzales, 1996, Bacterial aminopeptidases: properties and functions, FEMS Microbiol. Rev., 18, 319, 10.1111/j.1574-6976.1996.tb00247.x Gui, 2011, Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis, Biochem. Biophys. Res. Commun., 405, 272, 10.1016/j.bbrc.2011.01.027 Indiani, 2006, The replication clamp-loading machine at work in the three domains of life, Nat. Rev. Mol. Cell Biol., 7, 751, 10.1038/nrm2022 Jergic, 2013, A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode, EMBO J., 32, 1322, 10.1038/emboj.2012.347 Jeruzalmi, 2001, Mechanism of processivity clamp opening by the δ subunit wrench of the clamp loader complex of E. coli DNA polymerase III, Cell, 106, 417, 10.1016/S0092-8674(01)00462-7 Johnson, 2005, Cellular DNA replicases: components and dynamics at the replication fork, Annu. Rev. Biochem., 74, 283, 10.1146/annurev.biochem.73.011303.073859 Kelch, 2011, How a DNA polymerase clamp loader opens a sliding clamp, Science, 334, 1675, 10.1126/science.1211884 Kelman, 1995, DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine, Annu. Rev. Biochem., 64, 171, 10.1146/annurev.bi.64.070195.001131 Kenakin, 1993, Radioligand binding experiments, 385 Kohanski, 2010, How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol., 8, 423, 10.1038/nrmicro2333 Kong, 1992, Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp, Cell, 69, 425, 10.1016/0092-8674(92)90445-I Kongsuwan, 2006, The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp β subunit of DNA polymerase III: implication for the toxicity of a peptide derived from the amino-terminal portion of 33-kilodalton TrfA, J. Bacteriol., 188, 5501, 10.1128/JB.00231-06 Krömker, 2011, [Effects of an additional nonsteroidal anti-inflammatory therapy with carprofen (Rimadyl Rind) in cases of severe mastitis of high yielding cows], Berl. Munch. Tierarztl. Wochenschr., 124, 161 Leu, 2001, Interplay of clamp loader subunits in opening the β sliding clamp of Escherichia coli DNA polymerase III holoenzyme, J. Biol. Chem., 276, 47185, 10.1074/jbc.M106780200 Leu, 2000, The delta subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli, J. Biol. Chem., 275, 34609, 10.1074/jbc.M005495200 Lopez, 2007, Vedaprofen therapy in cats with upper respiratory tract infection or following ovariohysterectomy, J. Small Anim. Pract., 48, 70, 10.1111/j.1748-5827.2006.00211.x López de Saro, 2009, Regulation of interactions with sliding clamps during DNA replication and repair, Curr. Genomics, 10, 206, 10.2174/138920209788185234 Mason, 2013, Escherichia coli single-stranded DNA-binding protein: nanoESI-MS studies of salt-modulated subunit exchange and DNA binding transactions, J. Am. Soc. Mass Spectrom., 24, 274, 10.1007/s13361-012-0552-2 Naktinis, 1995, Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp, J. Biol. Chem., 270, 13358, 10.1074/jbc.270.22.13358 Oakley, 2003, Flexibility revealed by the 1.85 Å crystal structure of the β sliding-clamp subunit of Escherichia coli DNA polymerase III, Acta Crystallogr. D Biol. Crystallogr., 59, 1192, 10.1107/S0907444903009958 Origlieri, 2009, Emerging drugs for conjunctivitis, Expert Opin. Emerg. Drugs, 14, 523, 10.1517/14728210903103818 Otwinowski, 1997, Processing of X-ray diffraction data collected in the oscillation mode, Methods Enzymol., 276, 307, 10.1016/S0076-6879(97)76066-X Papadopoulos, 2007, COBALT: constraint-based alignment tool for multiple protein sequences, Bioinformatics, 23, 1073, 10.1093/bioinformatics/btm076 Pomerantz, 2007, Replisome mechanics: insights into a twin DNA polymerase machine, Trends Microbiol., 15, 156, 10.1016/j.tim.2007.02.007 Rigel, 2012, Making a β-barrel: assembly of outer membrane proteins in Gram-negative bacteria, Curr. Opin. Microbiol., 15, 189, 10.1016/j.mib.2011.12.007 Robinson, 2012, Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target, Curr. Drug Targets, 13, 352, 10.2174/138945012799424598 Shamoo, 1999, Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex, Cell, 99, 155, 10.1016/S0092-8674(00)81647-5 Shirin, 2006, Non-steroidal anti-inflammatory drugs have bacteriostatic and bactericidal activity against Helicobacter pylori, J. Gastroenterol. Hepatol., 21, 1388 Singh, 2004, Phospholipase A2 as a target protein for nonsteroidal anti-inflammatory drugs (NSAIDS): crystal structure of the complex formed between phospholipase A2 and oxyphenbutazone at 1.6 Å resolution, Biochemistry, 43, 14577, 10.1021/bi0483561 Singh, 2009, Simultaneous inhibition of anti-coagulation and inflammation: crystal structure of phospholipase A2 complexed with indomethacin at 1.4 Å resolution reveals the presence of the new common ligand-binding site, J. Mol. Recognit., 22, 437, 10.1002/jmr.960 Skubák, 2004, Direct incorporation of experimental phase information in model refinement, Acta Crystallogr. D Biol. Crystallogr., 60, 2196, 10.1107/S0907444904019079 Vonkeman, 2010, Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention, Semin. Arthritis Rheum., 39, 294, 10.1016/j.semarthrit.2008.08.001 Wijffels, 2004, Inhibition of protein interactions with the β2 sliding clamp of Escherichia coli DNA polymerase III by peptides from β2-binding proteins, Biochemistry, 43, 5661, 10.1021/bi036229j Wijffels, 2011, Binding inhibitors of the bacterial sliding clamp by design, J. Med. Chem., 54, 4831, 10.1021/jm2004333 Winn, 2011, Overview of the CCP4 suite and current developments, Acta Crystallogr. D Biol. Crystallogr., 67, 235, 10.1107/S0907444910045749 Wolff, 2011, Structure-based design of short peptide ligands binding onto the E. coli processivity ring, J. Med. Chem., 54, 4627, 10.1021/jm200311m Yin, 2013, Structural and thermodynamic dissection of linear motif recognition by the E. coli sliding clamp, J. Med. Chem., 56, 8665, 10.1021/jm401118f Zhou, 2010, NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling, Cancer Cell, 17, 560, 10.1016/j.ccr.2010.04.023