DNA Postreplication Repair Modulated by Ubiquitination and Sumoylation
Tài liệu tham khảo
Arnason, 1994, Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain, Mol. Cell. Biol, 14, 7876, 10.1128/MCB.14.12.7876
Ashley, 2002, Roles of mouse UBC13 in DNA postreplication repair and Lys63-linked ubiquitination, Gene, 285, 183, 10.1016/S0378-1119(02)00409-2
Ayyagari, 1995, A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair, Mol. Cell. Biol, 15, 4420, 10.1128/MCB.15.8.4420
Baboshina, 1996, Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5, J. Biol. Chem, 271, 2823, 10.1074/jbc.271.5.2823
Bachant, 1998, Regulatory metworks that control DNA damage-inducible genes in Saccharomyces cerevisiae, 383
Bachmair, 1986, In vivo half-life of a protein is a function of its amino-terminal residue, Science, 234, 179, 10.1126/science.3018930
Bailly, 1994, Specific complex formation between yeast RAD6 and RAD18 proteins: A potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites, Genes Dev, 8, 811, 10.1101/gad.8.7.811
Bailly, 1997, Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities, J. Biol. Chem, 272, 23360, 10.1074/jbc.272.37.23360
Bailly, 1997, Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein, Mol. Cell. Biol, 17, 4536, 10.1128/MCB.17.8.4536
Barbour, 2003, Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: A yeast model, Mutat. Res, 532, 137, 10.1016/j.mrfmmm.2003.08.014
Bayer, 1998, Structure determination of the small ubiquitin-related modifier SUMO-1, J. Mol. Biol, 280, 275, 10.1006/jmbi.1998.1839
Bernier-Villamor, 2002, Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1, Cell, 108, 345, 10.1016/S0092-8674(02)00630-X
Broomfield, 1998, MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway, Proc. Natl. Acad. Sci. USA, 95, 5678, 10.1073/pnas.95.10.5678
Broomfield, 2001, DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae, Mutat. Res, 486, 167, 10.1016/S0921-8777(01)00091-X
Broomfield, 2002, Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis, Nucleic Acids Res, 30, 732, 10.1093/nar/30.3.732
Brown, 2002, Structural and functional conservation of error-free DNA postreplication repair in Schizosaccharomyces pombe, DNA Repair, 1, 869, 10.1016/S1568-7864(02)00111-8
Brusky, 2000, UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae, Curr. Genet, 37, 168, 10.1007/s002940050515
Chau, 1989, A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science, 243, 1576, 10.1126/science.2538923
Chow, 2004, RecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli, J. Biol. Chem, 279, 3492, 10.1074/jbc.M311012200
Cook, 1993, Tertiary structures of class I ubiquitin-conjugating enzymes are highly conserved: Crystal structure of yeast Ubc4, Biochemistry, 32, 13809, 10.1021/bi00213a009
Courcelle, 1997, recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli, Proc. Natl. Acad. Sci. USA, 94, 3714, 10.1073/pnas.94.8.3714
Desterro, 1997, Ubch9 conjugates SUMO but not ubiquitin, FEBS Lett, 417, 297, 10.1016/S0014-5793(97)01305-7
Dohmen, 1991, The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme, Proc. Natl. Acad. Sci. USA, 88, 7351, 10.1073/pnas.88.16.7351
Fisk, 1999, A role for ubiquitination in mitochondrial inheritance in Saccharomyces cerevisiae, J. Cell. Biol, 145, 1199, 10.1083/jcb.145.6.1199
Galan, 1997, Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein, EMBO J, 16, 5847, 10.1093/emboj/16.19.5847
Haas, 1991, Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. Comparison to their putative rabbit homologs, E2(20K) and E2(32K), J. Biol. Chem, 266, 5104, 10.1016/S0021-9258(19)67761-6
Hershko, 1998, The ubiquitin system, Annu. Rev. Biochem, 67, 425, 10.1146/annurev.biochem.67.1.425
Hershko, 1983, Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown, J. Biol. Chem, 258, 8206, 10.1016/S0021-9258(20)82050-X
Hochstrasser, 1996, Ubiquitin-dependent protein degradation, Annu. Rev. Genet, 30, 405, 10.1146/annurev.genet.30.1.405
Hoege, 2002, RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO, Nature, 419, 135, 10.1038/nature00991
Hofmann, 1999, Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair, Cell, 96, 645, 10.1016/S0092-8674(00)80575-9
Huang, 1999, Structure of an E6AP-UbcH7 complex: Insights into ubiquitination by the E2-E3 enzyme cascade, Science, 286, 1321, 10.1126/science.286.5443.1321
Hwang, 2003, A conserved RING finger protein required for histone H2B monoubiquitination and cell size control, Mol. Cell, 11, 261, 10.1016/S1097-2765(02)00826-2
Jentsch, 1992, The ubiquitin-conjugation system, Annu. Rev. Genet, 26, 179, 10.1146/annurev.ge.26.120192.001143
Jentsch, 1987, The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme, Nature, 329, 131, 10.1038/329131a0
Joazeiro, 2000, RING finger proteins: Mediators of ubiquitin ligase activity, Cell, 102, 549, 10.1016/S0092-8674(00)00077-5
Johnson, 1997, Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p, J. Biol. Chem, 272, 26799, 10.1074/jbc.272.43.26799
Johnson, 1992, Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome, Mol. Cell. Biol, 12, 3807, 10.1128/MCB.12.9.3807
Kelman, 1998, Protein-PCNA interactions: a DNA-scanning mechanism?, Trends Biochem. Sci, 23, 236, 10.1016/S0968-0004(98)01223-7
Kogoma, 1997, Is RecF a DNA replication protein?, Proc. Natl. Acad. Sci. USA, 94, 3483, 10.1073/pnas.94.8.3483
Koken, 1991, Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6, Proc. Natl. Acad. Sci. USA, 88, 8865, 10.1073/pnas.88.20.8865
Koonin, 1997, TSG101 may be the prototype of a class of dominant negative ubiquitin regulators, Nat. Genet, 16, 330, 10.1038/ng0897-330
Kubota, 1996, Reconstitution of DNA base excision-repair with purified human proteins: Interaction between DNA polymerase beta and the XRCC1 protein, EMBO J, 15, 6662, 10.1002/j.1460-2075.1996.tb01056.x
Kuzminov, 1999, Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda, Microbiol. Mol. Biol. Rev, 63, 751, 10.1128/MMBR.63.4.751-813.1999
Lawrence, 1982, Mutagenesis in Saccharomyces cerevisiae, Adv. Genet, 21, 173, 10.1016/S0065-2660(08)60299-0
Li, 2002, Identification of a protein essential for a major pathway used by human cells to avoid UV-induced DNA damage, Proc. Natl. Acad. Sci. USA, 99, 4459, 10.1073/pnas.062047799
Liberi, 2000, Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity, EMBO J, 19, 5027, 10.1093/emboj/19.18.5027
Little, 1984, Autodigestion of lexA and phage lambda repressors, Proc. Natl. Acad. Sci. USA, 81, 1375, 10.1073/pnas.81.5.1375
Lovering, 1993, Identification and preliminary characterization of a protein motif related to the zinc finger, Proc. Natl. Acad. Sci. USA, 90, 2112, 10.1073/pnas.90.6.2112
Martini, 2002, A role for histone H2B during repair of UV-induced DNA damage in Saccharomyces cerevisiae, Genetics, 160, 1375, 10.1093/genetics/160.4.1375
McKenna, 2003, An NMR-based model of the ubiquitin-bound human ubiquitin conjugation complex Mms2.Ubc13. The structural basis for lysine 63 chain catalysis, J. Biol. Chem, 278, 13151, 10.1074/jbc.M212353200
McKenna, 2001, Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination, J. Biol. Chem, 276, 40120, 10.1074/jbc.M102858200
Moraes, 2001, Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2-hUbc13, Nat. Struct. Biol, 8, 669, 10.1038/90373
Ozkaynak, 1984, The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein, Nature, 312, 663, 10.1038/312663a0
Paunesku, 2001, Proliferating cell nuclear antigen (PCNA): Ringmaster of the genome, Int. J. Radiat. Biol, 77, 1007, 10.1080/09553000110069335
Pham, 2002, Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis, Proc. Natl. Acad. Sci. USA, 99, 11061, 10.1073/pnas.172197099
Pickart, 2001, Mechanisms underlying ubiquitination, Annu. Rev. Biochem, 70, 503, 10.1146/annurev.biochem.70.1.503
Prakash, 1993, DNA repair genes and proteins of Saccharomyces cerevisiae, Annu. Rev. Genet, 27, 33, 10.1146/annurev.ge.27.120193.000341
Reuven, 1999, The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA, and SSB and is specialized for translesion replication, J. Biol. Chem, 274, 31763, 10.1074/jbc.274.45.31763
Richmond, 1996, Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2⧸SNF2, Nucleic Acids Res, 24, 3685, 10.1093/nar/24.19.3685
Robzyk, 2000, Rad6-dependent ubiquitination of histone H2B in yeast, Science, 287, 501, 10.1126/science.287.5452.501
Rodriguez, 2001, SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting, J. Biol. Chem, 276, 12654, 10.1074/jbc.M009476200
Roest, 1996, Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification, Cell, 86, 799, 10.1016/S0092-8674(00)80154-3
Rupp, 1968, Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation, J. Mol. Biol, 31, 291, 10.1016/0022-2836(68)90445-2
Salles, 1984, Signal of induction of recA protein in E. coli, Mutat. Res, 131, 53, 10.1016/0167-8817(84)90011-7
Sampson, 2001, The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification, J. Biol. Chem, 276, 21664, 10.1074/jbc.M100006200
Sancho, 1998, Role of UEV-1, an inactive variant of the E2 ubiquitin-conjugating enzymes, in in vitro differentiation and cell cycle behavior of HT-29-M6 intestinal mucosecretory cells, Mol. Cell. Biol, 18, 576, 10.1128/MCB.18.1.576
Saurin, 1996, Does this have a familiar RING?, Trends Biochem. Sci, 21, 208, 10.1016/0968-0004(96)10036-0
Scheffner, 1995, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade, Nature, 373, 81, 10.1038/373081a0
Schiestl, 1990, The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway, Genetics, 124, 817, 10.1093/genetics/124.4.817
Schlesinger, 1975, The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells, Biochemistry, 14, 2214, 10.1021/bi00681a026
Schwartz, 2003, A superfamily of protein tags: Ubiquitin, SUMO and related modifiers, Trends Biochem. Sci, 28, 321, 10.1016/S0968-0004(03)00113-0
Schwarz, 1998, The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme, Proc. Natl. Acad. Sci. USA, 95, 560, 10.1073/pnas.95.2.560
Seufert, 1995, Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins, Nature, 373, 78, 10.1038/373078a0
Sheng, 2002, Solution structure of a yeast ubiquitin-like protein Smt3: The role of structurally less defined sequences in protein–protein recognitions, Protein Sci, 11, 1482, 10.1110/ps.0201602
Shinagawa, 1988, RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis, Proc. Natl. Acad. Sci. USA, 85, 1806, 10.1073/pnas.85.6.1806
Spence, 2000, Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain, Cell, 102, 67, 10.1016/S0092-8674(00)00011-8
Stelter, 2003, Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation, Nature, 425, 188, 10.1038/nature01965
Sung, 1991, Yeast RAD6 encoded ubiquitin conjugating enzyme mediates protein degradation dependent on the N-end-recognizing E3 enzyme, EMBO J, 10, 2187, 10.1002/j.1460-2075.1991.tb07754.x
Sung, 1988, The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity, Genes Dev, 2, 1476, 10.1101/gad.2.11.1476
Sung, 1990, Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions, Proc Natl Acad Sci USA, 87, 2695, 10.1073/pnas.87.7.2695
Takahashi, 2001, Yeast Ul11⧸Siz1 is a novel SUMO1⧸Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates, J. Biol. Chem, 276, 48973, 10.1074/jbc.M109295200
Takahashi, 2001, A novel factor required for the SUMO1⧸Smt3 conjugation of yeast septins, Gene, 275, 223, 10.1016/S0378-1119(01)00662-X
Tang, 1998, Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD′2C mutagenic complex and RecA protein, Proc. Natl. Acad. Sci. USA, 95, 9755, 10.1073/pnas.95.17.9755
Tang, 1999, “UmuD′(2)C is an error-prone DNA polymerase, Escherichia coli pol V, Proc. Natl. Acad. Sci. USA, 96, 8919, 10.1073/pnas.96.16.8919
Tateishi, 2000, Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens, Proc. Natl. Acad. Sci. USA, 97, 7927, 10.1073/pnas.97.14.7927
Torres-Ramos, 1996, Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair, Proc. Natl. Acad. Sci. USA, 93, 9676, 10.1073/pnas.93.18.9676
Ulrich, 2001, The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway, Nucleic Acids Res, 29, 3487, 10.1093/nar/29.17.3487
Ulrich, 2003, Protein–protein interactions within an E2-RING finger complex. Implications for ubiquitin-dependent DNA damage repair, J. Biol. Chem, 278, 7051, 10.1074/jbc.M212195200
Ulrich, 2000, Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair, EMBO J, 19, 3388, 10.1093/emboj/19.13.3388
VanDemark, 2002, Structural basis of ubiquitylation, Curr. Opin. Struct. Biol, 12, 822, 10.1016/S0959-440X(02)00389-5
VanDemark, 2001, Molecular insights into polyubiquitin chain assembly: Crystal structure of the Mms2⧸Ubc13 heterodimer, Cell, 105, 711, 10.1016/S0092-8674(01)00387-7
Vijay-Kumar, 1987, Structure of ubiquitin refined at 1.8 A resolution, J. Mol. Biol, 194, 531, 10.1016/0022-2836(87)90679-6
Vijay-Kumar, 1985, Three-dimensional structure of ubiquitin at 2.8 A resolution, Proc. Natl. Acad. Sci. USA, 82, 3582, 10.1073/pnas.82.11.3582
Villalobo, 2002, A homologue of CROC-1 in a ciliated protist (Sterkiella histriomuscorum) testifies to the ancient origin of the ubiquitin-conjugating enzyme variant family, Mol. Biol. Evol, 19, 39, 10.1093/oxfordjournals.molbev.a003980
Watkins, 1993, The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation, Genes Dev, 7, 250, 10.1101/gad.7.2.250
Webb, 1997, Recombinational DNA repair: The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps, Cell, 91, 347, 10.1016/S0092-8674(00)80418-3
Wood, 2003, Brel, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter, Mol. Cell, 11, 267, 10.1016/S1097-2765(02)00802-X
Worthylake, 1998, Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2.6 A resolution, J. Biol. Chem, 273, 6271, 10.1074/jbc.273.11.6271
Wu-Baer, 2003, The BRCA1⧸BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin, J. Biol. Chem, 278, 34743, 10.1074/jbc.C300249200
Xiao, 2000, The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways, Genetics, 155, 1633, 10.1093/genetics/155.4.1633
Xiao, 1999, Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae, Mutat. Res, 435, 1, 10.1016/S0921-8777(99)00034-8
Xiao, 1998, The products of the yeast MMS2 and two human homologs (hMMS2 and CROC-1) define a structurally and functionally conserved Ubc-like protein family, Nucleic Acids Res, 26, 3908, 10.1093/nar/26.17.3908
Zheng, 2000, Structure of a c-Cb1-UbcH7 complex: RING domain function in ubiquitin-protein ligases, Cell, 102, 533, 10.1016/S0092-8674(00)00057-X