DNA Microarray Analysis of Hippocampal Gene Expression Measured Twelve Hours after Hypoxia-Ischemia in the Mouse

Journal of Cerebral Blood Flow and Metabolism - Tập 23 Số 10 - Trang 1195-1211 - 2003
Robert Gilbert1, Willard J. Costain1, Marie-Eve Blanchard1, Kerry L Mullen1, R. William Currie2, Harold A. Robertson1
1Laboratory of Molecular Neurobiology, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
2Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada

Tóm tắt

Cell death from cerebral ischemia is a dynamic process. In the minutes to days after an ischemic insult, progressive changes in cellular morphology occur. Associated with these events is the regulation of competing programs of gene expression; some are protective against ischemic insult, and others contribute to delayed cell death. Many genes involved in these processes have been identified, but individually, these findings have provided only limited insight into the systems biology of cerebral ischemia. Attempts to characterize the coordinated expression of large numbers of genes in cerebral ischemia has only recently become possible. Today, DNA microarray technology provides a powerful tool for investigating parallel expression changes for thousands of genes at one time. In this study, adult mice were subjected to 30 minutes of hypoxia-ischemia (HI), and the hippocampus was examined 12 hours later for differential gene expression using a 15K high-density mouse EST array. The genomic response to HI is complex, affecting approximately 7% of the total number of ESTs examined. Assigning differentially expressed ESTs to molecular functional groups revealed that HI affects many pathways including the molecular chaperones, transcription factors, kinases, and calcium ion binding genes. A comprehensive list of regulated genes should prove valuable in advancing our understanding of the pathogenesis of cerebral ischemia.

Từ khóa


Tài liệu tham khảo

10.1016/0006-8993(93)91709-2

Babity JM, 1997, Methods Mol Biol, 85, 285

10.1016/S0962-8924(00)01874-2

10.1038/35019501

10.1074/jbc.M204619200

10.1038/35023595

10.1074/jbc.273.27.17147

10.1093/hmg/11.17.1939

10.1212/WNL.48.2.306

10.1002/jnr.10351

10.1523/JNEUROSCI.19-11-04200.1999

10.1007/978-94-011-5312-6_7

10.1016/S0169-328X(98)00042-4

10.1038/sj.cdd.4400829

10.1046/j.1471-4159.2001.00397.x

10.1006/bbrc.2001.5802

10.1016/S0006-8993(00)02346-5

10.1074/jbc.270.22.13429

10.1016/S0169-328X(01)00012-2

10.1002/ana.1073

10.1016/S0003-4975(00)02612-6

10.1038/ng0501-17

10.1016/0006-8993(93)90306-8

10.1016/S0361-9230(02)00823-7

10.1038/sj.leu.2402328

10.1046/j.1432-1033.2000.01336.x

10.1161/01.CIR.96.7.2287

10.1038/77046

10.1089/10445490152717541

10.1016/S0169-328X(01)00203-0

10.1046/j.1432-1033.2002.03272.x

10.1002/jnr.10157

10.1074/jbc.271.28.16510

Moore SK, 1989, J Biol Chem, 264, 5343, 10.1016/S0021-9258(18)83551-7

10.1128/MCB.17.9.5317

10.1074/jbc.273.33.21169

10.1002/glia.10081

10.1016/S0169-328X(00)00200-X

10.1016/S0169-328X(98)00027-8

10.1002/jnr.1176

Pasinetti GM, 2001, Restor Neurol Neurosci, 18, 137

10.1007/s10142-002-0049-3

10.1097/00004647-200107000-00001

10.1002/ana.410090206

10.1006/excr.1996.0070

10.1073/pnas.170276797

10.1016/S0169-328X(02)00516-8

10.1093/hmg/11.17.1953

10.1097/00004647-200007000-00004

10.1161/01.RES.86.9.939

10.1074/jbc.273.35.22506

10.1016/S0006-8993(02)03887-8

10.1002/jnr.10078

10.1073/pnas.091062498

10.1097/00004647-199601000-00009

10.1097/00004647-200101000-00007

10.1016/S0169-328X(96)00127-1

10.1152/physrev.1992.72.4.1063

10.1006/bbrc.1998.8894

10.1097/00004647-200107000-00006

Yang YH, 2002, Nat Rev Genet, 3, 579, 10.1038/nrg863

10.1161/01.STR.32.1.168