DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98
Ahsan MA, Jabbari V, Islam MT et al (2019) Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Sci Total Environ 673:306–317. https://doi.org/10.1016/j.scitotenv.2019.03.219
Ahsan MA, Jabbari V, Imam MA et al (2020) Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci Total Environ 698:134214. https://doi.org/10.1016/j.scitotenv.2019.134214
Ahsan MA, Deemer E, Fernandez-Delgado O et al (2019) Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal Commun 130:105753. https://doi.org/10.1016/j.catcom.2019.105753
Ahsan MA, Fernandez-Delgado O, Deemer E et al (2019) Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J Mol Liq 290:111059. https://doi.org/10.1016/j.molliq.2019.111059
Ahsan MA, Jabbari V, El-Gendy AA et al (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl Surf Sci 497:143608. https://doi.org/10.1016/j.apsusc.2019.143608
Franco A, Cebrián-García S, Rodríguez-Padrón D et al (2018) Encapsulated laccases as effective electrocatalysts for oxygen reduction reactions. ACS Sustain Chem Eng 6:11058–11062. https://doi.org/10.1021/acssuschemeng.8b02529
Cova CM, Zuliani A, Puente Santiago AR et al (2018) Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J Mater Chem A 6:21516–21523. https://doi.org/10.1039/C8TA06417B
Ostovar S, Franco A, Puente-Santiago AR et al (2018) Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Front Chem 6:1–7. https://doi.org/10.3389/fchem.2018.00077
Rodríguez-Padrón D, Puente-Santiago AR, Balu AM et al (2019) Environmental catalysis: present and future. ChemCatChem 11:18–38. https://doi.org/10.1002/cctc.201801248
Feng S, Li D, Low Z et al (2017) ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter. J Memb Sci 531:86–93. https://doi.org/10.1016/j.memsci.2017.02.042
Shalan AE, El-Shazly AN, Rashad MM, Allam NK (2019) Tin-zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells. Nanoscale Adv 1:2654–2662. https://doi.org/10.1039/c9na00182d
Sanad MF, Shalan AE, Bazid SM et al (2019) A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 9:31021–31029. https://doi.org/10.1039/C9RA05669F
León Félix L, Sanz B, Sebastián V et al (2019) Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Sci Rep 9:4185. https://doi.org/10.1038/s41598-019-40769-2
Saif S, Tahir A, Asim T et al (2019) Polymeric nanocomposites of iron-oxide nanoparticles (IONPs) synthesized using Terminalia chebula leaf extract for enhanced adsorption of arsenic(V) from water. Colloids Interfaces 3:17. https://doi.org/10.3390/colloids3010017
Kim H-M, Kim D, Jeong C et al (2018) Assembly of plasmonic and magnetic nanoparticles with fluorescent silica shell layer for tri-functional SERS-magnetic-fluorescence probes and its bioapplications. Sci Rep 8:13938. https://doi.org/10.1038/s41598-018-32044-7
Pershina AG, Sazonov AE, Filimonov VD (2014) Magnetic nanoparticles—DNA interactions: design and applications of nanobiohybrid systems. Russ Chem Rev 83:299–322. https://doi.org/10.1070/RC2014v083n04ABEH004412
Feng Q, Liu Y, Huang J et al (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:2082. https://doi.org/10.1038/s41598-018-19628-z
Huerta-Nuñez LFE, Gutierrez-Iglesias G, Martinez-Cuazitl A et al (2019) A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci Rep 9:6419. https://doi.org/10.1038/s41598-019-42776-9
Wei Y, Liao R, Mahmood AA et al (2017) pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent. Acta Biomater 55:194–203. https://doi.org/10.1016/j.actbio.2017.03.046
Sahoo SL, Liu C-H (2015) Adsorption behaviors of DNA by modified magnetic nanoparticles: effect of spacer and salt. Colloids Surf A Physicochem Eng Asp 482:184–194. https://doi.org/10.1016/j.colsurfa.2015.05.010
Haddad Y, Xhaxhiu K, Kopel P et al (2016) The isolation of DNA by polycharged magnetic particles: an analysis of the interaction by zeta potential and particle size. Int J Mol Sci 17:550. https://doi.org/10.3390/ijms17040550
Robinson I, Tung LD, Maenosono S et al (2010) Synthesis of core–shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2:2624. https://doi.org/10.1039/c0nr00621a
Esmaeili E, Ghiass MA, Vossoughi M, Soleimani M (2017) Hybrid magnetic-DNA directed immobilisation approach for efficient protein capture and detection on microfluidic platforms. Sci Rep 7:194. https://doi.org/10.1038/s41598-017-00268-8
Sun W, Fletcher D, van Heeckeren RC, Davis PB (2012) Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin. J Drug Target 20:678–690. https://doi.org/10.3109/1061186X.2012.712128
Cheon HJ, Lee SM, Kim S-R et al (2018) Colorimetric detection of MPT64 antibody based on an aptamer adsorbed magnetic nanoparticles for diagnosis of tuberculosis. J Nanosci Nanotechnol 19:622–626. https://doi.org/10.1166/jnn.2019.15905
Ghaemi M, Absalan G (2014) Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles. Microchim Acta 181:45–53. https://doi.org/10.1007/s00604-013-1040-5
Smolders S, Kessels S, Smolders SM-T et al (2018) Magnetofection is superior to other chemical transfection methods in a microglial cell line. J Neurosci Methods 293:169–173. https://doi.org/10.1016/j.jneumeth.2017.09.017
Megías R, Arco M, Ciriza J et al (2017) Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. Int J Pharm 518:270–280. https://doi.org/10.1016/j.ijpharm.2016.12.042
Singh J, Mohanty I, Rattan S (2018) In vivo magnetofection: a novel approach for targeted topical delivery of nucleic acids for rectoanal motility disorders. Am J Physiol Liver Physiol 314:G109–G118. https://doi.org/10.1152/ajpgi.00233.2017
Wang W, Wang Y, Tu L et al (2015) Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Sci Rep 4:5716. https://doi.org/10.1038/srep05716
Elgqvist J (2017) Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int J Mol Sci 18:1102. https://doi.org/10.3390/ijms18051102
Sungsuwan S, Yin Z, Huang X (2015) Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl Mater Interfaces 7:17535–17544. https://doi.org/10.1021/acsami.5b05497
Ernst C, Bartel A, Elferink JW et al (2019) Improved DNA extraction and purification with magnetic nanoparticles for the detection of methicillin-resistant Staphylococcus aureus. Vet Microbiol 230:45–48. https://doi.org/10.1016/j.vetmic.2019.01.009
Sharma A, Goyal AK, Rath G (2018) Recent advances in metal nanoparticles in cancer therapy. J Drug Target 26:617–632. https://doi.org/10.1080/1061186X.2017.1400553
Li S, Tang F, Wang H et al (2018) Au–Ag and Pt–Ag bimetallic nanoparticles@halloysite nanotubes: morphological modulation, improvement of thermal stability and catalytic performance. RSC Adv 8:10237–10245. https://doi.org/10.1039/C8RA00423D
Mazrouaa AM, Mohamed MG, Fekry M (2019) Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt J Pet 28:165–171. https://doi.org/10.1016/j.ejpe.2019.02.002
Smith M, McKeague M, DeRosa MC (2019) Synthesis, transfer, and characterization of core–shell gold-coated magnetic nanoparticles. MethodsX 6:333–354. https://doi.org/10.1016/j.mex.2019.02.006
Jishkariani D, Wu Y, Wang D et al (2017) Preparation and self-assembly of dendronized Janus Fe3O4–Pt and Fe3O4–Au heterodimers. ACS Nano 11:7958–7966. https://doi.org/10.1021/acsnano.7b02485
Nikitin A, Khramtsov M, Garanina A et al (2019) Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. J Magn Magn Mater 469:443–449. https://doi.org/10.1016/j.jmmm.2018.09.014
Lv YB, Chandrasekharan P, Li Y et al (2018) Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T1-enhanced contrast. J Mater Chem B 6:1470–1478. https://doi.org/10.1039/C7TB03129G
Hong L, Zhou F, Shi D et al (2017) Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Biosens Bioelectron 95:152–159. https://doi.org/10.1016/j.bios.2017.04.023
Farahbakhsh F, Ahmadi M, Hekmatara SH et al (2019) Improvement of photocatalyst properties of magnetic NPs by new anionic surfactant. Mater Chem Phys 224:279–285. https://doi.org/10.1016/j.matchemphys.2018.11.074
Ivashchenko O, Peplińska B, Gapiński J et al (2018) Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: effect of magnetic field and temperature on self-organization. Sci Rep 8:4041. https://doi.org/10.1038/s41598-018-22426-2
Demangeat E, Pédrot M, Dia A et al (2018) Colloidal and chemical stabilities of iron oxide nanoparticles in aqueous solutions: the interplay of structural, chemical and environmental drivers. Environ Sci Nano 5:992–1001. https://doi.org/10.1039/C7EN01159H
Gupta R, Sharma D (2019) Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Int J Hyperth 36:302–312. https://doi.org/10.1080/02656736.2019.1565787
Kurapov YA, Vazhnichaya EM, Litvin SE et al (2019) Physical synthesis of iron oxide nanoparticles and their biological activity in vivo. SN Appl Sci 1:102. https://doi.org/10.1007/s42452-018-0110-z
Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323. https://doi.org/10.1016/j.matchemphys.2016.09.058
Maity D, Choo S-G, Yi J et al (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J Magn Magn Mater 321:1256–1259. https://doi.org/10.1016/j.jmmm.2008.11.013
Ansari S, Ficiarà E, Ruffinatti F et al (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel) 12:465. https://doi.org/10.3390/ma12030465
Obayemi JD, Dozie-Nwachukwu S, Danyuo Y et al (2015) Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH). Mater Sci Eng C 46:482–496. https://doi.org/10.1016/j.msec.2014.10.081
Sosa-Acosta J, Silva JA, Fernández-Izquierdo L et al (2018) Iron oxide nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 545:167–178. https://doi.org/10.1016/j.colsurfa.2018.02.062
LaGrow AP, Besenhard MO, Hodzic A et al (2019) Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution. Nanoscale 11:6620–6628. https://doi.org/10.1039/C9NR00531E
Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. https://doi.org/10.1021/cr068445e
Lassenberger A, Grünewald TA, van Oostrum PDJ et al (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater 29:4511–4522. https://doi.org/10.1021/acs.chemmater.7b01207
Cotin G, Kiefer C, Perton F et al (2018) Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials 8:881. https://doi.org/10.3390/nano8110881
Nam J-H, Joo Y-H, Lee J-H et al (2009) Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation. J Magn Magn Mater 321:1389–1392. https://doi.org/10.1016/j.jmmm.2009.02.044
Lee J-H, Huh Y-M, Jun Y et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99. https://doi.org/10.1038/nm1467
Prodělalová J, Rittich B, Španová A et al (2004) Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J Chromatogr A 1056:43–48. https://doi.org/10.1016/j.chroma.2004.08.090
Zheng J, Hu L, Zhang M et al (2015) An electrochemical sensing strategy for the detection of the hepatitis B virus sequence with homogenous hybridization based on host–guest recognition. RSC Adv 5:92025–92032. https://doi.org/10.1039/C5RA16204A
Salehiabar M, Nosrati H, Davaran S et al (2018) Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res (Stuttg) 68:280–285. https://doi.org/10.1055/s-0043-120197
Goroncy C, Saloga PEJ, Gruner M et al (2018) Influence of organic ligands on the surface oxidation state and magnetic properties of iron oxide particles. Z Phys Chem 232:819–844. https://doi.org/10.1515/zpch-2017-1084
Nosrati H, Salehiabar M, Davaran S et al (2018) Methotrexate-conjugated l-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm 44:886–894. https://doi.org/10.1080/03639045.2017.1417422
Piotrowski P, Krogul-Sobczak A, Kaim A (2019) Magnetic iron oxide nanoparticles functionalized with C60 phosphonic acid derivative for catalytic reduction of 4-nitrophenol. J Environ Chem Eng 7:103147. https://doi.org/10.1016/j.jece.2019.103147
Xu Y, Qin Y, Palchoudhury S, Bao Y (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997. https://doi.org/10.1021/la201652h
Sun M, Dai B, Liu K et al (2018) Enhancement in thermal conductivity of polymer composites using aligned diamonds coated with superparamagnetic magnetite. Compos Sci Technol 164:129–135. https://doi.org/10.1016/j.compscitech.2018.05.039
Fan Q, Guan Y, Zhang Z et al (2019) A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction. Chem Phys Lett 715:7–13. https://doi.org/10.1016/j.cplett.2018.11.001
Hufschmid R, Teeman E, Mehdi BL et al (2019) Observing the colloidal stability of iron oxide nanoparticles in situ. Nanoscale 11:13098–13107. https://doi.org/10.1039/C9NR03709H
Schroffenegger M, Reimhult E (2018) Thermoresponsive core–shell nanoparticles: does core size matter? Materials (Basel) 11:1654. https://doi.org/10.3390/ma11091654
Iriarte-Mesa C, Díaz-Castañón S, Abradelo DG (2019) Facile immobilization of Trametes versicolor laccase on highly monodisperse superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 181:470–479. https://doi.org/10.1016/j.colsurfb.2019.05.012
Du L, Wang W, Zhang C et al (2018) A versatile coordinating ligand for coating semiconductor, metal, and metal oxide nanocrystals. Chem Mater 30:7269–7279. https://doi.org/10.1021/acs.chemmater.8b03527
Veisi H, Razeghi S, Mohammadi P, Hemmati S (2019) Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mater Sci Eng C 97:624–631. https://doi.org/10.1016/j.msec.2018.12.076
Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S et al (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc 33:3957–3962. https://doi.org/10.5012/bkcs.2012.33.12.3957
Nosrati H, Salehiabar M, Davaran S et al (2017) New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed 43:7423–7442. https://doi.org/10.1007/s11164-017-3084-3
Bai Y, Roncancio D, Suo Y et al (2019) A method based on amino-modified magnetic nanoparticles to extract DNA for PCR-based analysis. Colloids Surf B Biointerfaces 179:87–93. https://doi.org/10.1016/j.colsurfb.2019.03.005
Oza G, Krishnajyothi K, Merupo VI et al (2019) Gold-iron oxide yolk-shell nanoparticles (YSNPs) as magnetic probe for fluorescence-based detection of 3 base mismatch DNA. Colloids Surf B Biointerfaces 176:431–438. https://doi.org/10.1016/j.colsurfb.2019.01.016
Chen WD, Kohll AX, Nguyen BH et al (2019) Combining data longevity with high storage capacity—layer-by-layer DNA encapsulated in magnetic nanoparticles. Adv Funct Mater 29:1901672. https://doi.org/10.1002/adfm.201901672
Wang L, Yao M, Fang X, Yao X (2019) Novel competitive chemiluminescence DNA assay based on Fe3O4@SiO2@Au-functionalized magnetic nanoparticles for sensitive detection of p53 tumor suppressor gene. Appl Biochem Biotechnol 187:152–162. https://doi.org/10.1007/s12010-018-2808-1
Dalmina M, Pittella F, Sierra JA et al (2019) Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C 99:1182–1190. https://doi.org/10.1016/j.msec.2019.02.026
Bakshi S, Zakharchenko A, Minko S et al (2019) Towards nanomaterials for cancer theranostics: a system of DNA-modified magnetic nanoparticles for detection and suppression of RNA marker in cancer cells. Magnetochemistry 5:24. https://doi.org/10.3390/magnetochemistry5020024
Khadsai S, Seeja N, Deepuppha N et al (2018) Poly(acrylic acid)-grafted magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for specific adsorption with real DNA. Colloids Surf B Biointerfaces 165:243–251. https://doi.org/10.1016/j.colsurfb.2018.02.039
Song J, Lei T, Yang Y et al (2018) Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. New J Chem 42:8458–8468. https://doi.org/10.1039/C8NJ00426A
Karami F, Noori-Daloii MR, Omidfar K et al (2018) Modified methylated DNA immunoprecipitation protocol for noninvasive prenatal diagnosis of Down syndrome. J Obstet Gynaecol Res 44:608–613. https://doi.org/10.1111/jog.13577
Ceylan Ş, Odabaşı M (2013) Novel adsorbent for DNA adsorption: Fe3+-attached sporopollenin particles embedded composite cryogels. Artif Cells Nanomed Biotechnol 41:376–383. https://doi.org/10.3109/21691401.2012.759125
Liu B, Liu J (2014) DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem Commun 50:8568. https://doi.org/10.1039/C4CC03264K
Guo Y, Wang Y, Li S et al (2017) DNA-spheres decorated with magnetic nanocomposites based on terminal transfer reactions for versatile target detection and cellular targeted drug delivery. Chem Commun 53:4826–4829. https://doi.org/10.1039/C7CC00310B
Wang H, Yang R, Yang L, Tan W (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460. https://doi.org/10.1021/nn9006303
Panda D, Saha P, Das T, Dash J (2017) Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat Commun 8:16103. https://doi.org/10.1038/ncomms16103
Stanciu L, Won Y-H, Ganesana M, Andreescu S (2009) Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 9:2976–2999. https://doi.org/10.3390/s90402976
Tintoré M, Mazzini S, Polito L et al (2015) Gold-coated superparamagnetic nanoparticles for single methyl discrimination in DNA aptamers. Int J Mol Sci 16:27625–27639. https://doi.org/10.3390/ijms161126046
Slavin S, De Cuendias A, Ladmiral V, Haddleton DM (2011) Biotin functionalized poly(sulfonic acid)s for bioconjugation: in situ binding monitoring by QCM-D. J Polym Sci A Polym Chem 49:1163–1173. https://doi.org/10.1002/pola.24532
Trigueros Domènech, Toulis Marfany (2019) In vitro gene delivery in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes (Basel) 10:289. https://doi.org/10.3390/genes10040289
Pandit KR, Nanayakkara IA, Cao W et al (2015) Capture and direct amplification of DNA on chitosan microparticles in a single PCR-optimal solution. Anal Chem 87:11022–11029. https://doi.org/10.1021/acs.analchem.5b03006
Liu Y, Li Y, Li X-M, He T (2013) Kinetics of (3-aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29:15275–15282. https://doi.org/10.1021/la403269u
Tiwari AP, Satvekar RK, Rohiwal SS et al (2015) Magneto-separation of genomic deoxyribose nucleic acid using pH responsive Fe3O4 @silica@chitosan nanoparticles in biological samples. RSC Adv 5:8463–8470. https://doi.org/10.1039/C4RA15806G
Bui TQ, Ngo HTM, Tran HT (2018) Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of mono-core magnetite-silica nanocomposites. J Sci Adv Mater Devices 3:323–330. https://doi.org/10.1016/j.jsamd.2018.07.002
Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393. https://doi.org/10.1021/cm035346y
Byrne SJ, Corr SA, Gun’ko YK et al (2004) Magnetic nanoparticle assemblies on denatured DNA show unusual magnetic relaxivity and potential applications for MRI. Chem Commun 10:2560. https://doi.org/10.1039/b409603g
Mohamed HDA, Watson SMD, Horrocks BR, Houlton A (2012) Magnetic and conductive magnetite nanowires by DNA-templating. Nanoscale 4:5936. https://doi.org/10.1039/c2nr31559a
Sreenivasulu G, Lochbiler TA, Panda M et al (2016) Self-assembly of multiferroic core–shell particulate nanocomposites through DNA–DNA hybridization and magnetic field directed assembly of superstructures. AIP Adv 6:045202. https://doi.org/10.1063/1.4945761
Zhu N, Zhang A, He P, Fang Y (2004) DNA hybridization at magnetic nanoparticles with electrochemical stripping detection. Electroanalysis 16:1925–1930. https://doi.org/10.1002/elan.200303028
Wang F, Shen H, Feng J, Yang H (2006) PNA-modified magnetic nanoparticles and their hybridization with single-stranded DNA target: surface enhanced Raman scatterings study. Microchim Acta 153:15–20. https://doi.org/10.1007/s00604-005-0460-2
Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37:625–636
de Freitas CF, Montanha MC, Pellosi DS et al (2019) Biotin-targeted mixed liposomes: a smart strategy for selective release of a photosensitizer agent in cancer cells. Mater Sci Eng C 104:109923. https://doi.org/10.1016/j.msec.2019.109923
Cannon B, Campos AR, Lewitz Z et al (2012) Zeptomole detection of DNA nanoparticles by single-molecule fluorescence with magnetic field-directed localization. Anal Biochem 431:40–47. https://doi.org/10.1016/j.ab.2012.08.017
He N, Wang F, Ma C et al (2013) Chemiluminescence analysis for HBV-DNA hybridization detection with magnetic nanoparticles based DNA extraction from positive whole blood samples. J Biomed Nanotechnol 9:267–273. https://doi.org/10.1166/jbn.2013.1478
Oberacker P, Stepper P, Bond DM et al (2019) Bio-On-Magnetic-Beads (BOMB): open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol 17:e3000107. https://doi.org/10.1371/journal.pbio.3000107
Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1:581–585. https://doi.org/10.1038/nprot.2006.83
Delaney S, Murphy R, Walsh F (2018) A comparison of methods for the extraction of plasmids capable of conferring antibiotic resistance in a human pathogen from complex broiler cecal samples. Front Microbiol 9:1731. https://doi.org/10.3389/fmicb.2018.01731
Sermwittayawong D, Jakkawanpitak C, Waji N, Hutadilok-Towatana N (2013) Economical method for midiprep plasmid DNA purification using diatomaceous earth. ScienceAsia 39:631. https://doi.org/10.2306/scienceasia1513-1874.2013.39.631
Bai Y, Cui Y, Suo Y et al (2019) A rapid method for detection of salmonella in milk based on extraction of mRNA using magnetic capture probes and RT-qPCR. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00770
Griffiths L, Chacon-Cortes D (2014) Methods for extracting genomic DNA from whole blood samples: current perspectives. J Biorepository Sci Appl Med 2:1. https://doi.org/10.2147/BSAM.S46573
Di Pietro F, Ortenzi F, Tilio M et al (2011) Genomic DNA extraction from whole blood stored from 15- to 30-years at −20°C by rapid phenol–chloroform protocol: a useful tool for genetic epidemiology studies. Mol Cell Probes 25:44–48. https://doi.org/10.1016/j.mcp.2010.10.003
Neng-Biao W, Lian X, Li-na C et al (2009) Isolation and purification of plasmid D NA by silica-coated magnetic nanoparticles. Chin J Biochem Mol Biol 25:958–962
Köse K (2016) Nucleotide incorporated magnetic microparticles for isolation of DNA. Process Biochem 51:1644–1649. https://doi.org/10.1016/j.procbio.2016.07.021
Berensmeier S (2006) Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 73:495–504. https://doi.org/10.1007/s00253-006-0675-0
Tanaka T, Sakai R, Kobayashi R et al (2009) Contributions of phosphate to DNA adsorption/desorption behaviors on aminosilane-modified magnetic nanoparticles. Langmuir 25:2956–2961. https://doi.org/10.1021/la8032397
Min JH, Woo M-K, Yoon HY et al (2014) Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid. Anal Biochem 447:114–118. https://doi.org/10.1016/j.ab.2013.11.018
Smerkova K, Dostalova S, Vaculovicova M et al (2013) Investigation of interaction between magnetic silica particles and lambda phage DNA fragment. J Pharm Biomed Anal 86:65–72. https://doi.org/10.1016/j.jpba.2013.07.039
Saiyed ZM, Bochiwal C, Gorasia H et al (2006) Application of magnetic particles (Fe3O4) for isolation of genomic DNA from mammalian cells. Anal Biochem 356:306–308. https://doi.org/10.1016/j.ab.2006.06.027
Gessner I, Yu X, Jüngst C et al (2019) Selective capture and purification of microRNAs and intracellular proteins through antisense-vectorized magnetic nanobeads. Sci Rep 9:2069. https://doi.org/10.1038/s41598-019-39575-7
Pang KM, Castanotto D, Li H et al (2018) Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy. Nucleic Acids Res 46:e6–e6. https://doi.org/10.1093/nar/gkx980
Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105. https://doi.org/10.1016/S0140-6736(07)60982-9
Katada Y, Kobayashi K, Tsubota K, Kurihara T (2019) Evaluation of AAV-DJ vector for retinal gene therapy. PeerJ 7:e6317. https://doi.org/10.7717/peerj.6317
Yao J, Rotenberg D, Whitfield AE (2019) Delivery of maize mosaic virus to planthopper vectors by microinjection increases infection efficiency and facilitates functional genomics experiments in the vector. J Virol Methods 270:153–162. https://doi.org/10.1016/j.jviromet.2019.05.010
Forjanic T, Markelc B, Marcan M et al (2019) Electroporation-induced stress response and its effect on gene electrotransfer efficacy. In vivo imaging and numerical modeling. IEEE Trans Biomed Eng 66:2671–2683. https://doi.org/10.1109/TBME.2019.2894659
Schmitt MA, Friedrich O, Gilbert DF (2019) Portoporator©: a portable low-cost electroporation device for gene transfer to cultured cells in biotechnology, biomedical research and education. Biosens Bioelectron 131:95–103. https://doi.org/10.1016/j.bios.2019.02.024
Kasala D, Yoon A-R, Hong J et al (2016) Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine 11:1689–1713. https://doi.org/10.2217/nnm-2016-0060
Pinyon JL, Klugmann M, Lovell NH, Housley GD (2019) Dual-plasmid bionic array-directed gene electrotransfer in HEK293 cells and cochlear mesenchymal cells probes transgene expression and cell fate. Hum Gene Ther 30:211–224. https://doi.org/10.1089/hum.2018.062
Durymanov M, Reineke J (2018) Non-viral delivery of nucleic acids: insight into mechanisms of overcoming intracellular barriers. Front Pharmacol 9:1–15. https://doi.org/10.3389/fphar.2018.00971
Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8:65. https://doi.org/10.3390/genes8020065
González B, Ruiz-Hernández E, Feito MJ et al (2011) Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection. J Mater Chem 21:4598. https://doi.org/10.1039/c0jm03526b
Sohrabijam Z, Saeidifar M, Zamanian A (2017) Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA. Colloids Surf B Biointerfaces 152:169–175. https://doi.org/10.1016/j.colsurfb.2017.01.028
Cen C, Wu J, Zhang Y et al (2019) Improving magnetofection of magnetic polyethylenimine nanoparticles into MG-63 osteoblasts using a novel uniform magnetic field. Nanoscale Res Lett 14:90. https://doi.org/10.1186/s11671-019-2882-5
Govindarajan S, Kitaura K, Takafuji M et al (2013) Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int J Pharm 446:87–99. https://doi.org/10.1016/j.ijpharm.2013.01.055
Mu X, Li J, Yan S et al (2018) siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy. ACS Biomater Sci Eng 4:3895–3905. https://doi.org/10.1021/acsbiomaterials.8b00858
Namgung R, Singha K, Yu MK et al (2010) Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31:4204–4213. https://doi.org/10.1016/j.biomaterials.2010.01.123
Kami D, Takeda S, Makino H et al (2011) Efficient transfection method using deacylated polyethylenimine-coated magnetic nanoparticles. J Artif Organs 14:215–222. https://doi.org/10.1007/s10047-011-0568-6
Wu H-C, Wang T-W, Bohn MC et al (2010) Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Adv Funct Mater 20:67–77. https://doi.org/10.1002/adfm.200901108
Prijic S, Prosen L, Cemazar M et al (2012) Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 33:4379–4391. https://doi.org/10.1016/j.biomaterials.2012.02.061
Veiseh O, Kievit FM, Gunn JW et al (2009) A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 30:649–657. https://doi.org/10.1016/j.biomaterials.2008.10.003
Castillo B, Bromberg L, López X et al (2012) Intracellular delivery of siRNA by polycationic superparamagnetic nanoparticles. J Drug Deliv 2012:1–12. https://doi.org/10.1155/2012/218940
Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI–PEG–chitosan–copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251. https://doi.org/10.1002/adfm.200801844
Mykhaylyk O, Antequera YS, Vlaskou D, Plank C (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2:2391–2411. https://doi.org/10.1038/nprot.2007.352
Gulce-Iz S, Saglam-Metiner P (2019) Current state of the art in DNA vaccine delivery and molecular adjuvants: Bcl-xL anti-apoptotic protein as a molecular adjuvant. In: Immune response activation and immunomodulation. IntechOpen. https://doi.org/10.5772/intechopen.82203
Boxus M, Tignon M, Roels S et al (2007) DNA immunization with plasmids encoding fusion and nucleocapsid proteins of bovine respiratory syncytial virus induces a strong cell-mediated immunity and protects calves against challenge. J Virol 81:6879–6889. https://doi.org/10.1128/JVI.00502-07
Al-Deen FN, Ho J, Selomulya C et al (2011) Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir 27:3703–3712. https://doi.org/10.1021/la104479c
Garu A, Moku G, Gulla SK, Chaudhuri A (2016) Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol Ther 24:385–397. https://doi.org/10.1038/mt.2015.215
Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. https://doi.org/10.1038/nbt0396-303
Liu H, Li S, Tian L et al (2010) A novel single nucleotide polymorphisms detection sensors based on magnetic nanoparticles array and dual-color single base extension. J Nanosci Nanotechnol 10:5311–5315. https://doi.org/10.1166/jnn.2010.2386
Lapitan LDS, Xu Y, Guo Y, Zhou D (2019) Combining magnetic nanoparticle capture and poly-enzyme nanobead amplification for ultrasensitive detection and discrimination of DNA single nucleotide polymorphisms. Nanoscale 11:1195–1204. https://doi.org/10.1039/C8NR07641C
Lee M-H, Leu C-C, Lin C-C et al (2019) Gold-decorated magnetic nanoparticles modified with hairpin-shaped DNA for fluorometric discrimination of single-base mismatch DNA. Microchim Acta 186:80. https://doi.org/10.1007/s00604-018-3192-9
Sharma R, Akshath US, Bhatt P, Raghavarao K (2019) Fluorescent aptaswitch for chloramphenicol detection—quantification enabled by immobilization of aptamer. Sens Actuators B Chem 290:110–117. https://doi.org/10.1016/j.snb.2019.03.093
Xuhong Y, Sinong Z, Jianping L et al (2019) A PCR-lateral flow assay system based on gold magnetic nanoparticles for CYP2C19 genotyping and its clinical applications. Artif Cells Nanomed Biotechnol 47:636–643. https://doi.org/10.1080/21691401.2019.1575841
Cheng H, Liu J, Ma W et al (2018) Low background cascade signal amplification electrochemical sensing platform for tumor-related mRNA quantification by target-activated hybridization chain reaction and electroactive cargo release. Anal Chem 90:12544–12552. https://doi.org/10.1021/acs.analchem.8b02470
Shan Y, Zhang Y, Kang W et al (2019) Quantitative and selective DNA detection with portable personal glucose meter using loop-based DNA competitive hybridization strategy. Sens Actuators B Chem 282:197–203. https://doi.org/10.1016/j.snb.2018.11.062
Tian B, Qiu Z, Ma J et al (2018) On-particle rolling circle amplification-based core–satellite magnetic superstructures for microRNA detection. ACS Appl Mater Interfaces 10(3):2957–2964. https://doi.org/10.1021/acsami.7b16293
Li W, Jiang W, Dai S, Wang L (2016) Multiplexed detection of cytokines based on dual bar-code strategy and single-molecule counting. Anal Chem 88:1578–1584. https://doi.org/10.1021/acs.analchem.5b03043
Xu Y, Huo B, Li C et al (2019) Ultrasensitive detection of staphylococcal enterotoxin B in foodstuff through dual signal amplification by bio-barcode and real-time PCR. Food Chem 283:338–344. https://doi.org/10.1016/j.foodchem.2018.12.128