DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications

José Raúl Sosa‐Acosta1, Claudia Iriarte‐Mesa1, Greter A. Ortega1, Alicia Díaz-García1
1Laboratory of Bioinorganic (LBI), Department of Inorganic and General Chemistry, Faculty of Chemistry, University of Havana, Havana, Cuba

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

Ahsan MA, Jabbari V, Islam MT et al (2019) Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Sci Total Environ 673:306–317. https://doi.org/10.1016/j.scitotenv.2019.03.219

Ahsan MA, Jabbari V, Imam MA et al (2020) Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci Total Environ 698:134214. https://doi.org/10.1016/j.scitotenv.2019.134214

Ahsan MA, Deemer E, Fernandez-Delgado O et al (2019) Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catal Commun 130:105753. https://doi.org/10.1016/j.catcom.2019.105753

Ahsan MA, Fernandez-Delgado O, Deemer E et al (2019) Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. J Mol Liq 290:111059. https://doi.org/10.1016/j.molliq.2019.111059

Ahsan MA, Jabbari V, El-Gendy AA et al (2019) Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Appl Surf Sci 497:143608. https://doi.org/10.1016/j.apsusc.2019.143608

Franco A, Cebrián-García S, Rodríguez-Padrón D et al (2018) Encapsulated laccases as effective electrocatalysts for oxygen reduction reactions. ACS Sustain Chem Eng 6:11058–11062. https://doi.org/10.1021/acssuschemeng.8b02529

Cova CM, Zuliani A, Puente Santiago AR et al (2018) Microwave-assisted preparation of Ag/Ag2S carbon hybrid structures from pig bristles as efficient HER catalysts. J Mater Chem A 6:21516–21523. https://doi.org/10.1039/C8TA06417B

Ostovar S, Franco A, Puente-Santiago AR et al (2018) Efficient mechanochemical bifunctional nanocatalysts for the conversion of isoeugenol to vanillin. Front Chem 6:1–7. https://doi.org/10.3389/fchem.2018.00077

Rodríguez-Padrón D, Puente-Santiago AR, Balu AM et al (2019) Environmental catalysis: present and future. ChemCatChem 11:18–38. https://doi.org/10.1002/cctc.201801248

Feng S, Li D, Low Z et al (2017) ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter. J Memb Sci 531:86–93. https://doi.org/10.1016/j.memsci.2017.02.042

Shalan AE, El-Shazly AN, Rashad MM, Allam NK (2019) Tin-zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells. Nanoscale Adv 1:2654–2662. https://doi.org/10.1039/c9na00182d

Sanad MF, Shalan AE, Bazid SM et al (2019) A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 9:31021–31029. https://doi.org/10.1039/C9RA05669F

León Félix L, Sanz B, Sebastián V et al (2019) Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Sci Rep 9:4185. https://doi.org/10.1038/s41598-019-40769-2

Saif S, Tahir A, Asim T et al (2019) Polymeric nanocomposites of iron-oxide nanoparticles (IONPs) synthesized using Terminalia chebula leaf extract for enhanced adsorption of arsenic(V) from water. Colloids Interfaces 3:17. https://doi.org/10.3390/colloids3010017

Kim H-M, Kim D, Jeong C et al (2018) Assembly of plasmonic and magnetic nanoparticles with fluorescent silica shell layer for tri-functional SERS-magnetic-fluorescence probes and its bioapplications. Sci Rep 8:13938. https://doi.org/10.1038/s41598-018-32044-7

Pershina AG, Sazonov AE, Filimonov VD (2014) Magnetic nanoparticles—DNA interactions: design and applications of nanobiohybrid systems. Russ Chem Rev 83:299–322. https://doi.org/10.1070/RC2014v083n04ABEH004412

Feng Q, Liu Y, Huang J et al (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:2082. https://doi.org/10.1038/s41598-018-19628-z

Huerta-Nuñez LFE, Gutierrez-Iglesias G, Martinez-Cuazitl A et al (2019) A biosensor capable of identifying low quantities of breast cancer cells by electrical impedance spectroscopy. Sci Rep 9:6419. https://doi.org/10.1038/s41598-019-42776-9

Wei Y, Liao R, Mahmood AA et al (2017) pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent. Acta Biomater 55:194–203. https://doi.org/10.1016/j.actbio.2017.03.046

Sahoo SL, Liu C-H (2015) Adsorption behaviors of DNA by modified magnetic nanoparticles: effect of spacer and salt. Colloids Surf A Physicochem Eng Asp 482:184–194. https://doi.org/10.1016/j.colsurfa.2015.05.010

Haddad Y, Xhaxhiu K, Kopel P et al (2016) The isolation of DNA by polycharged magnetic particles: an analysis of the interaction by zeta potential and particle size. Int J Mol Sci 17:550. https://doi.org/10.3390/ijms17040550

Robinson I, Tung LD, Maenosono S et al (2010) Synthesis of core–shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2:2624. https://doi.org/10.1039/c0nr00621a

Esmaeili E, Ghiass MA, Vossoughi M, Soleimani M (2017) Hybrid magnetic-DNA directed immobilisation approach for efficient protein capture and detection on microfluidic platforms. Sci Rep 7:194. https://doi.org/10.1038/s41598-017-00268-8

Sun W, Fletcher D, van Heeckeren RC, Davis PB (2012) Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin. J Drug Target 20:678–690. https://doi.org/10.3109/1061186X.2012.712128

Cheon HJ, Lee SM, Kim S-R et al (2018) Colorimetric detection of MPT64 antibody based on an aptamer adsorbed magnetic nanoparticles for diagnosis of tuberculosis. J Nanosci Nanotechnol 19:622–626. https://doi.org/10.1166/jnn.2019.15905

Ghaemi M, Absalan G (2014) Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles. Microchim Acta 181:45–53. https://doi.org/10.1007/s00604-013-1040-5

Smolders S, Kessels S, Smolders SM-T et al (2018) Magnetofection is superior to other chemical transfection methods in a microglial cell line. J Neurosci Methods 293:169–173. https://doi.org/10.1016/j.jneumeth.2017.09.017

Megías R, Arco M, Ciriza J et al (2017) Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. Int J Pharm 518:270–280. https://doi.org/10.1016/j.ijpharm.2016.12.042

Singh J, Mohanty I, Rattan S (2018) In vivo magnetofection: a novel approach for targeted topical delivery of nucleic acids for rectoanal motility disorders. Am J Physiol Liver Physiol 314:G109–G118. https://doi.org/10.1152/ajpgi.00233.2017

Wang W, Wang Y, Tu L et al (2015) Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system. Sci Rep 4:5716. https://doi.org/10.1038/srep05716

Elgqvist J (2017) Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int J Mol Sci 18:1102. https://doi.org/10.3390/ijms18051102

Sungsuwan S, Yin Z, Huang X (2015) Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl Mater Interfaces 7:17535–17544. https://doi.org/10.1021/acsami.5b05497

Ernst C, Bartel A, Elferink JW et al (2019) Improved DNA extraction and purification with magnetic nanoparticles for the detection of methicillin-resistant Staphylococcus aureus. Vet Microbiol 230:45–48. https://doi.org/10.1016/j.vetmic.2019.01.009

Sharma A, Goyal AK, Rath G (2018) Recent advances in metal nanoparticles in cancer therapy. J Drug Target 26:617–632. https://doi.org/10.1080/1061186X.2017.1400553

Li S, Tang F, Wang H et al (2018) Au–Ag and Pt–Ag bimetallic nanoparticles@halloysite nanotubes: morphological modulation, improvement of thermal stability and catalytic performance. RSC Adv 8:10237–10245. https://doi.org/10.1039/C8RA00423D

Mazrouaa AM, Mohamed MG, Fekry M (2019) Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt J Pet 28:165–171. https://doi.org/10.1016/j.ejpe.2019.02.002

Smith M, McKeague M, DeRosa MC (2019) Synthesis, transfer, and characterization of core–shell gold-coated magnetic nanoparticles. MethodsX 6:333–354. https://doi.org/10.1016/j.mex.2019.02.006

Jishkariani D, Wu Y, Wang D et al (2017) Preparation and self-assembly of dendronized Janus Fe3O4–Pt and Fe3O4–Au heterodimers. ACS Nano 11:7958–7966. https://doi.org/10.1021/acsnano.7b02485

Nikitin A, Khramtsov M, Garanina A et al (2019) Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia. J Magn Magn Mater 469:443–449. https://doi.org/10.1016/j.jmmm.2018.09.014

Lv YB, Chandrasekharan P, Li Y et al (2018) Magnetic resonance imaging quantification and biodistribution of magnetic nanoparticles using T1-enhanced contrast. J Mater Chem B 6:1470–1478. https://doi.org/10.1039/C7TB03129G

Hong L, Zhou F, Shi D et al (2017) Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Biosens Bioelectron 95:152–159. https://doi.org/10.1016/j.bios.2017.04.023

Farahbakhsh F, Ahmadi M, Hekmatara SH et al (2019) Improvement of photocatalyst properties of magnetic NPs by new anionic surfactant. Mater Chem Phys 224:279–285. https://doi.org/10.1016/j.matchemphys.2018.11.074

Ivashchenko O, Peplińska B, Gapiński J et al (2018) Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: effect of magnetic field and temperature on self-organization. Sci Rep 8:4041. https://doi.org/10.1038/s41598-018-22426-2

Demangeat E, Pédrot M, Dia A et al (2018) Colloidal and chemical stabilities of iron oxide nanoparticles in aqueous solutions: the interplay of structural, chemical and environmental drivers. Environ Sci Nano 5:992–1001. https://doi.org/10.1039/C7EN01159H

Gupta R, Sharma D (2019) Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Int J Hyperth 36:302–312. https://doi.org/10.1080/02656736.2019.1565787

Kurapov YA, Vazhnichaya EM, Litvin SE et al (2019) Physical synthesis of iron oxide nanoparticles and their biological activity in vivo. SN Appl Sci 1:102. https://doi.org/10.1007/s42452-018-0110-z

Yazdani F, Seddigh M (2016) Magnetite nanoparticles synthesized by co-precipitation method: the effects of various iron anions on specifications. Mater Chem Phys 184:318–323. https://doi.org/10.1016/j.matchemphys.2016.09.058

Maity D, Choo S-G, Yi J et al (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J Magn Magn Mater 321:1256–1259. https://doi.org/10.1016/j.jmmm.2008.11.013

Ansari S, Ficiarà E, Ruffinatti F et al (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials (Basel) 12:465. https://doi.org/10.3390/ma12030465

Obayemi JD, Dozie-Nwachukwu S, Danyuo Y et al (2015) Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH). Mater Sci Eng C 46:482–496. https://doi.org/10.1016/j.msec.2014.10.081

Sosa-Acosta J, Silva JA, Fernández-Izquierdo L et al (2018) Iron oxide nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 545:167–178. https://doi.org/10.1016/j.colsurfa.2018.02.062

LaGrow AP, Besenhard MO, Hodzic A et al (2019) Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution. Nanoscale 11:6620–6628. https://doi.org/10.1039/C9NR00531E

Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. https://doi.org/10.1021/cr068445e

Lassenberger A, Grünewald TA, van Oostrum PDJ et al (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle X-ray scattering. Chem Mater 29:4511–4522. https://doi.org/10.1021/acs.chemmater.7b01207

Cotin G, Kiefer C, Perton F et al (2018) Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials 8:881. https://doi.org/10.3390/nano8110881

Nam J-H, Joo Y-H, Lee J-H et al (2009) Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation. J Magn Magn Mater 321:1389–1392. https://doi.org/10.1016/j.jmmm.2009.02.044

Lee J-H, Huh Y-M, Jun Y et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99. https://doi.org/10.1038/nm1467

Prodělalová J, Rittich B, Španová A et al (2004) Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J Chromatogr A 1056:43–48. https://doi.org/10.1016/j.chroma.2004.08.090

Zheng J, Hu L, Zhang M et al (2015) An electrochemical sensing strategy for the detection of the hepatitis B virus sequence with homogenous hybridization based on host–guest recognition. RSC Adv 5:92025–92032. https://doi.org/10.1039/C5RA16204A

Salehiabar M, Nosrati H, Davaran S et al (2018) Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res (Stuttg) 68:280–285. https://doi.org/10.1055/s-0043-120197

Goroncy C, Saloga PEJ, Gruner M et al (2018) Influence of organic ligands on the surface oxidation state and magnetic properties of iron oxide particles. Z Phys Chem 232:819–844. https://doi.org/10.1515/zpch-2017-1084

Nosrati H, Salehiabar M, Davaran S et al (2018) Methotrexate-conjugated l-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm 44:886–894. https://doi.org/10.1080/03639045.2017.1417422

Piotrowski P, Krogul-Sobczak A, Kaim A (2019) Magnetic iron oxide nanoparticles functionalized with C60 phosphonic acid derivative for catalytic reduction of 4-nitrophenol. J Environ Chem Eng 7:103147. https://doi.org/10.1016/j.jece.2019.103147

Xu Y, Qin Y, Palchoudhury S, Bao Y (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997. https://doi.org/10.1021/la201652h

Sun M, Dai B, Liu K et al (2018) Enhancement in thermal conductivity of polymer composites using aligned diamonds coated with superparamagnetic magnetite. Compos Sci Technol 164:129–135. https://doi.org/10.1016/j.compscitech.2018.05.039

Fan Q, Guan Y, Zhang Z et al (2019) A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction. Chem Phys Lett 715:7–13. https://doi.org/10.1016/j.cplett.2018.11.001

Hufschmid R, Teeman E, Mehdi BL et al (2019) Observing the colloidal stability of iron oxide nanoparticles in situ. Nanoscale 11:13098–13107. https://doi.org/10.1039/C9NR03709H

Schroffenegger M, Reimhult E (2018) Thermoresponsive core–shell nanoparticles: does core size matter? Materials (Basel) 11:1654. https://doi.org/10.3390/ma11091654

Iriarte-Mesa C, Díaz-Castañón S, Abradelo DG (2019) Facile immobilization of Trametes versicolor laccase on highly monodisperse superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointerfaces 181:470–479. https://doi.org/10.1016/j.colsurfb.2019.05.012

Du L, Wang W, Zhang C et al (2018) A versatile coordinating ligand for coating semiconductor, metal, and metal oxide nanocrystals. Chem Mater 30:7269–7279. https://doi.org/10.1021/acs.chemmater.8b03527

Veisi H, Razeghi S, Mohammadi P, Hemmati S (2019) Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mater Sci Eng C 97:624–631. https://doi.org/10.1016/j.msec.2018.12.076

Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S et al (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc 33:3957–3962. https://doi.org/10.5012/bkcs.2012.33.12.3957

Nosrati H, Salehiabar M, Davaran S et al (2017) New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed 43:7423–7442. https://doi.org/10.1007/s11164-017-3084-3

Bai Y, Roncancio D, Suo Y et al (2019) A method based on amino-modified magnetic nanoparticles to extract DNA for PCR-based analysis. Colloids Surf B Biointerfaces 179:87–93. https://doi.org/10.1016/j.colsurfb.2019.03.005

Oza G, Krishnajyothi K, Merupo VI et al (2019) Gold-iron oxide yolk-shell nanoparticles (YSNPs) as magnetic probe for fluorescence-based detection of 3 base mismatch DNA. Colloids Surf B Biointerfaces 176:431–438. https://doi.org/10.1016/j.colsurfb.2019.01.016

Chen WD, Kohll AX, Nguyen BH et al (2019) Combining data longevity with high storage capacity—layer-by-layer DNA encapsulated in magnetic nanoparticles. Adv Funct Mater 29:1901672. https://doi.org/10.1002/adfm.201901672

Wang L, Yao M, Fang X, Yao X (2019) Novel competitive chemiluminescence DNA assay based on Fe3O4@SiO2@Au-functionalized magnetic nanoparticles for sensitive detection of p53 tumor suppressor gene. Appl Biochem Biotechnol 187:152–162. https://doi.org/10.1007/s12010-018-2808-1

Dalmina M, Pittella F, Sierra JA et al (2019) Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C 99:1182–1190. https://doi.org/10.1016/j.msec.2019.02.026

Bakshi S, Zakharchenko A, Minko S et al (2019) Towards nanomaterials for cancer theranostics: a system of DNA-modified magnetic nanoparticles for detection and suppression of RNA marker in cancer cells. Magnetochemistry 5:24. https://doi.org/10.3390/magnetochemistry5020024

Khadsai S, Seeja N, Deepuppha N et al (2018) Poly(acrylic acid)-grafted magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for specific adsorption with real DNA. Colloids Surf B Biointerfaces 165:243–251. https://doi.org/10.1016/j.colsurfb.2018.02.039

Song J, Lei T, Yang Y et al (2018) Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. New J Chem 42:8458–8468. https://doi.org/10.1039/C8NJ00426A

Karami F, Noori-Daloii MR, Omidfar K et al (2018) Modified methylated DNA immunoprecipitation protocol for noninvasive prenatal diagnosis of Down syndrome. J Obstet Gynaecol Res 44:608–613. https://doi.org/10.1111/jog.13577

Ceylan Ş, Odabaşı M (2013) Novel adsorbent for DNA adsorption: Fe3+-attached sporopollenin particles embedded composite cryogels. Artif Cells Nanomed Biotechnol 41:376–383. https://doi.org/10.3109/21691401.2012.759125

Liu B, Liu J (2014) DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem Commun 50:8568. https://doi.org/10.1039/C4CC03264K

Guo Y, Wang Y, Li S et al (2017) DNA-spheres decorated with magnetic nanocomposites based on terminal transfer reactions for versatile target detection and cellular targeted drug delivery. Chem Commun 53:4826–4829. https://doi.org/10.1039/C7CC00310B

Wang H, Yang R, Yang L, Tan W (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460. https://doi.org/10.1021/nn9006303

Panda D, Saha P, Das T, Dash J (2017) Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor. Nat Commun 8:16103. https://doi.org/10.1038/ncomms16103

Stanciu L, Won Y-H, Ganesana M, Andreescu S (2009) Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 9:2976–2999. https://doi.org/10.3390/s90402976

Tintoré M, Mazzini S, Polito L et al (2015) Gold-coated superparamagnetic nanoparticles for single methyl discrimination in DNA aptamers. Int J Mol Sci 16:27625–27639. https://doi.org/10.3390/ijms161126046

Slavin S, De Cuendias A, Ladmiral V, Haddleton DM (2011) Biotin functionalized poly(sulfonic acid)s for bioconjugation: in situ binding monitoring by QCM-D. J Polym Sci A Polym Chem 49:1163–1173. https://doi.org/10.1002/pola.24532

Trigueros Domènech, Toulis Marfany (2019) In vitro gene delivery in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes (Basel) 10:289. https://doi.org/10.3390/genes10040289

Pandit KR, Nanayakkara IA, Cao W et al (2015) Capture and direct amplification of DNA on chitosan microparticles in a single PCR-optimal solution. Anal Chem 87:11022–11029. https://doi.org/10.1021/acs.analchem.5b03006

Liu Y, Li Y, Li X-M, He T (2013) Kinetics of (3-aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29:15275–15282. https://doi.org/10.1021/la403269u

Tiwari AP, Satvekar RK, Rohiwal SS et al (2015) Magneto-separation of genomic deoxyribose nucleic acid using pH responsive Fe3O4 @silica@chitosan nanoparticles in biological samples. RSC Adv 5:8463–8470. https://doi.org/10.1039/C4RA15806G

Bui TQ, Ngo HTM, Tran HT (2018) Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of mono-core magnetite-silica nanocomposites. J Sci Adv Mater Devices 3:323–330. https://doi.org/10.1016/j.jsamd.2018.07.002

Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393. https://doi.org/10.1021/cm035346y

Byrne SJ, Corr SA, Gun’ko YK et al (2004) Magnetic nanoparticle assemblies on denatured DNA show unusual magnetic relaxivity and potential applications for MRI. Chem Commun 10:2560. https://doi.org/10.1039/b409603g

Mohamed HDA, Watson SMD, Horrocks BR, Houlton A (2012) Magnetic and conductive magnetite nanowires by DNA-templating. Nanoscale 4:5936. https://doi.org/10.1039/c2nr31559a

Sreenivasulu G, Lochbiler TA, Panda M et al (2016) Self-assembly of multiferroic core–shell particulate nanocomposites through DNA–DNA hybridization and magnetic field directed assembly of superstructures. AIP Adv 6:045202. https://doi.org/10.1063/1.4945761

Zhu N, Zhang A, He P, Fang Y (2004) DNA hybridization at magnetic nanoparticles with electrochemical stripping detection. Electroanalysis 16:1925–1930. https://doi.org/10.1002/elan.200303028

Wang F, Shen H, Feng J, Yang H (2006) PNA-modified magnetic nanoparticles and their hybridization with single-stranded DNA target: surface enhanced Raman scatterings study. Microchim Acta 153:15–20. https://doi.org/10.1007/s00604-005-0460-2

Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37:625–636

de Freitas CF, Montanha MC, Pellosi DS et al (2019) Biotin-targeted mixed liposomes: a smart strategy for selective release of a photosensitizer agent in cancer cells. Mater Sci Eng C 104:109923. https://doi.org/10.1016/j.msec.2019.109923

Cannon B, Campos AR, Lewitz Z et al (2012) Zeptomole detection of DNA nanoparticles by single-molecule fluorescence with magnetic field-directed localization. Anal Biochem 431:40–47. https://doi.org/10.1016/j.ab.2012.08.017

He N, Wang F, Ma C et al (2013) Chemiluminescence analysis for HBV-DNA hybridization detection with magnetic nanoparticles based DNA extraction from positive whole blood samples. J Biomed Nanotechnol 9:267–273. https://doi.org/10.1166/jbn.2013.1478

Oberacker P, Stepper P, Bond DM et al (2019) Bio-On-Magnetic-Beads (BOMB): open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol 17:e3000107. https://doi.org/10.1371/journal.pbio.3000107

Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1:581–585. https://doi.org/10.1038/nprot.2006.83

Delaney S, Murphy R, Walsh F (2018) A comparison of methods for the extraction of plasmids capable of conferring antibiotic resistance in a human pathogen from complex broiler cecal samples. Front Microbiol 9:1731. https://doi.org/10.3389/fmicb.2018.01731

Sermwittayawong D, Jakkawanpitak C, Waji N, Hutadilok-Towatana N (2013) Economical method for midiprep plasmid DNA purification using diatomaceous earth. ScienceAsia 39:631. https://doi.org/10.2306/scienceasia1513-1874.2013.39.631

Bai Y, Cui Y, Suo Y et al (2019) A rapid method for detection of salmonella in milk based on extraction of mRNA using magnetic capture probes and RT-qPCR. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00770

Griffiths L, Chacon-Cortes D (2014) Methods for extracting genomic DNA from whole blood samples: current perspectives. J Biorepository Sci Appl Med 2:1. https://doi.org/10.2147/BSAM.S46573

Di Pietro F, Ortenzi F, Tilio M et al (2011) Genomic DNA extraction from whole blood stored from 15- to 30-years at −20°C by rapid phenol–chloroform protocol: a useful tool for genetic epidemiology studies. Mol Cell Probes 25:44–48. https://doi.org/10.1016/j.mcp.2010.10.003

Neng-Biao W, Lian X, Li-na C et al (2009) Isolation and purification of plasmid D NA by silica-coated magnetic nanoparticles. Chin J Biochem Mol Biol 25:958–962

Köse K (2016) Nucleotide incorporated magnetic microparticles for isolation of DNA. Process Biochem 51:1644–1649. https://doi.org/10.1016/j.procbio.2016.07.021

Berensmeier S (2006) Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 73:495–504. https://doi.org/10.1007/s00253-006-0675-0

Tanaka T, Sakai R, Kobayashi R et al (2009) Contributions of phosphate to DNA adsorption/desorption behaviors on aminosilane-modified magnetic nanoparticles. Langmuir 25:2956–2961. https://doi.org/10.1021/la8032397

Min JH, Woo M-K, Yoon HY et al (2014) Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid. Anal Biochem 447:114–118. https://doi.org/10.1016/j.ab.2013.11.018

Smerkova K, Dostalova S, Vaculovicova M et al (2013) Investigation of interaction between magnetic silica particles and lambda phage DNA fragment. J Pharm Biomed Anal 86:65–72. https://doi.org/10.1016/j.jpba.2013.07.039

Saiyed ZM, Bochiwal C, Gorasia H et al (2006) Application of magnetic particles (Fe3O4) for isolation of genomic DNA from mammalian cells. Anal Biochem 356:306–308. https://doi.org/10.1016/j.ab.2006.06.027

Gessner I, Yu X, Jüngst C et al (2019) Selective capture and purification of microRNAs and intracellular proteins through antisense-vectorized magnetic nanobeads. Sci Rep 9:2069. https://doi.org/10.1038/s41598-019-39575-7

Pang KM, Castanotto D, Li H et al (2018) Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy. Nucleic Acids Res 46:e6–e6. https://doi.org/10.1093/nar/gkx980

Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105. https://doi.org/10.1016/S0140-6736(07)60982-9

Katada Y, Kobayashi K, Tsubota K, Kurihara T (2019) Evaluation of AAV-DJ vector for retinal gene therapy. PeerJ 7:e6317. https://doi.org/10.7717/peerj.6317

Yao J, Rotenberg D, Whitfield AE (2019) Delivery of maize mosaic virus to planthopper vectors by microinjection increases infection efficiency and facilitates functional genomics experiments in the vector. J Virol Methods 270:153–162. https://doi.org/10.1016/j.jviromet.2019.05.010

Forjanic T, Markelc B, Marcan M et al (2019) Electroporation-induced stress response and its effect on gene electrotransfer efficacy. In vivo imaging and numerical modeling. IEEE Trans Biomed Eng 66:2671–2683. https://doi.org/10.1109/TBME.2019.2894659

Schmitt MA, Friedrich O, Gilbert DF (2019) Portoporator©: a portable low-cost electroporation device for gene transfer to cultured cells in biotechnology, biomedical research and education. Biosens Bioelectron 131:95–103. https://doi.org/10.1016/j.bios.2019.02.024

Kasala D, Yoon A-R, Hong J et al (2016) Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine 11:1689–1713. https://doi.org/10.2217/nnm-2016-0060

Pinyon JL, Klugmann M, Lovell NH, Housley GD (2019) Dual-plasmid bionic array-directed gene electrotransfer in HEK293 cells and cochlear mesenchymal cells probes transgene expression and cell fate. Hum Gene Ther 30:211–224. https://doi.org/10.1089/hum.2018.062

Durymanov M, Reineke J (2018) Non-viral delivery of nucleic acids: insight into mechanisms of overcoming intracellular barriers. Front Pharmacol 9:1–15. https://doi.org/10.3389/fphar.2018.00971

Hardee C, Arévalo-Soliz L, Hornstein B, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8:65. https://doi.org/10.3390/genes8020065

González B, Ruiz-Hernández E, Feito MJ et al (2011) Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection. J Mater Chem 21:4598. https://doi.org/10.1039/c0jm03526b

Sohrabijam Z, Saeidifar M, Zamanian A (2017) Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA. Colloids Surf B Biointerfaces 152:169–175. https://doi.org/10.1016/j.colsurfb.2017.01.028

Cen C, Wu J, Zhang Y et al (2019) Improving magnetofection of magnetic polyethylenimine nanoparticles into MG-63 osteoblasts using a novel uniform magnetic field. Nanoscale Res Lett 14:90. https://doi.org/10.1186/s11671-019-2882-5

Govindarajan S, Kitaura K, Takafuji M et al (2013) Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int J Pharm 446:87–99. https://doi.org/10.1016/j.ijpharm.2013.01.055

Mu X, Li J, Yan S et al (2018) siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy. ACS Biomater Sci Eng 4:3895–3905. https://doi.org/10.1021/acsbiomaterials.8b00858

Namgung R, Singha K, Yu MK et al (2010) Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31:4204–4213. https://doi.org/10.1016/j.biomaterials.2010.01.123

Kami D, Takeda S, Makino H et al (2011) Efficient transfection method using deacylated polyethylenimine-coated magnetic nanoparticles. J Artif Organs 14:215–222. https://doi.org/10.1007/s10047-011-0568-6

Wu H-C, Wang T-W, Bohn MC et al (2010) Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Adv Funct Mater 20:67–77. https://doi.org/10.1002/adfm.200901108

Prijic S, Prosen L, Cemazar M et al (2012) Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 33:4379–4391. https://doi.org/10.1016/j.biomaterials.2012.02.061

Veiseh O, Kievit FM, Gunn JW et al (2009) A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 30:649–657. https://doi.org/10.1016/j.biomaterials.2008.10.003

Castillo B, Bromberg L, López X et al (2012) Intracellular delivery of siRNA by polycationic superparamagnetic nanoparticles. J Drug Deliv 2012:1–12. https://doi.org/10.1155/2012/218940

Kievit FM, Veiseh O, Bhattarai N et al (2009) PEI–PEG–chitosan–copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251. https://doi.org/10.1002/adfm.200801844

Mykhaylyk O, Antequera YS, Vlaskou D, Plank C (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2:2391–2411. https://doi.org/10.1038/nprot.2007.352

Gulce-Iz S, Saglam-Metiner P (2019) Current state of the art in DNA vaccine delivery and molecular adjuvants: Bcl-xL anti-apoptotic protein as a molecular adjuvant. In: Immune response activation and immunomodulation. IntechOpen. https://doi.org/10.5772/intechopen.82203

Boxus M, Tignon M, Roels S et al (2007) DNA immunization with plasmids encoding fusion and nucleocapsid proteins of bovine respiratory syncytial virus induces a strong cell-mediated immunity and protects calves against challenge. J Virol 81:6879–6889. https://doi.org/10.1128/JVI.00502-07

Al-Deen FN, Ho J, Selomulya C et al (2011) Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir 27:3703–3712. https://doi.org/10.1021/la104479c

Garu A, Moku G, Gulla SK, Chaudhuri A (2016) Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol Ther 24:385–397. https://doi.org/10.1038/mt.2015.215

Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. https://doi.org/10.1038/nbt0396-303

Liu H, Li S, Tian L et al (2010) A novel single nucleotide polymorphisms detection sensors based on magnetic nanoparticles array and dual-color single base extension. J Nanosci Nanotechnol 10:5311–5315. https://doi.org/10.1166/jnn.2010.2386

Lapitan LDS, Xu Y, Guo Y, Zhou D (2019) Combining magnetic nanoparticle capture and poly-enzyme nanobead amplification for ultrasensitive detection and discrimination of DNA single nucleotide polymorphisms. Nanoscale 11:1195–1204. https://doi.org/10.1039/C8NR07641C

Lee M-H, Leu C-C, Lin C-C et al (2019) Gold-decorated magnetic nanoparticles modified with hairpin-shaped DNA for fluorometric discrimination of single-base mismatch DNA. Microchim Acta 186:80. https://doi.org/10.1007/s00604-018-3192-9

Sharma R, Akshath US, Bhatt P, Raghavarao K (2019) Fluorescent aptaswitch for chloramphenicol detection—quantification enabled by immobilization of aptamer. Sens Actuators B Chem 290:110–117. https://doi.org/10.1016/j.snb.2019.03.093

Xuhong Y, Sinong Z, Jianping L et al (2019) A PCR-lateral flow assay system based on gold magnetic nanoparticles for CYP2C19 genotyping and its clinical applications. Artif Cells Nanomed Biotechnol 47:636–643. https://doi.org/10.1080/21691401.2019.1575841

Cheng H, Liu J, Ma W et al (2018) Low background cascade signal amplification electrochemical sensing platform for tumor-related mRNA quantification by target-activated hybridization chain reaction and electroactive cargo release. Anal Chem 90:12544–12552. https://doi.org/10.1021/acs.analchem.8b02470

Shan Y, Zhang Y, Kang W et al (2019) Quantitative and selective DNA detection with portable personal glucose meter using loop-based DNA competitive hybridization strategy. Sens Actuators B Chem 282:197–203. https://doi.org/10.1016/j.snb.2018.11.062

Tian B, Qiu Z, Ma J et al (2018) On-particle rolling circle amplification-based core–satellite magnetic superstructures for microRNA detection. ACS Appl Mater Interfaces 10(3):2957–2964. https://doi.org/10.1021/acsami.7b16293

Li W, Jiang W, Dai S, Wang L (2016) Multiplexed detection of cytokines based on dual bar-code strategy and single-molecule counting. Anal Chem 88:1578–1584. https://doi.org/10.1021/acs.analchem.5b03043

Xu Y, Huo B, Li C et al (2019) Ultrasensitive detection of staphylococcal enterotoxin B in foodstuff through dual signal amplification by bio-barcode and real-time PCR. Food Chem 283:338–344. https://doi.org/10.1016/j.foodchem.2018.12.128

Jiang P, Haji C, Ye X et al (2019) A novel inductive coupled plasma mass spectrometry gene detection method based on AuNPs and bio-barcode signal amplification. Nanosci Nanotechnol Lett 11:638–644. https://doi.org/10.1166/nnl.2019.2933