DFT study on Pt(II)-catalyzed tandem reaction of propargylic ester
Tóm tắt
Từ khóa
Tài liệu tham khảo
Trost, 1991, Intramolecular enyne metathesis reaction. Route to bridged bicycles with bridgehead olefins, J. Am. Chem. Soc., 113, 1850, 10.1021/ja00005a070
Xia, 2010, Mechanisms of the Au- and Pt-catalyzed intramolecular acetylenic schmidt reactions: a DFT study, J. Org. Chem., 75, 7842, 10.1021/jo1017469
Correa, 2008, Golden carousel in catalysis: the cationic gold/propargylic ester cycle, Angew. Chem. Int. Ed., 47, 718, 10.1002/anie.200703769
Ji, 2008, PtCl2-catalyzed tandem triple migration reaction toward (Z)-1,5-dien-2-yl esters, Org. Lett., 10, 3919, 10.1021/ol8015463
Soriano, 2007, On accounting for the stereoselective control of the metal-catalyzed rautenstrauch cyclopropanation by computational methods, J. Org. Chem., 72, 2651, 10.1021/jo062594f
Soriano, 2007, DFT-based mechanism for the unexpected formation of dienes in the PtCl2 isomerization of propargylic acetates: examples of inhibition of the rautenstrauch process, J. Org. Chem., 72, 1443, 10.1021/jo0622983
Peng, 2007, Au-catalyzed reaction of propargylic sulfides and dithioacetals, J. Org. Chem., 72, 1192, 10.1021/jo0618674
Zheng, 2010, Pt-catalyzed tandem 1,2-acyloxy migration/intramolecular [3+2] cycloaddition of enynyl esters, J. Am. Chem. Soc., 132, 1788, 10.1021/ja910346m
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2004.
Becke, 1993, Density-functional thermochemistry. III The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913
Miehlich, 1989, Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr, Chem. Phys. Lett., 157, 200, 10.1016/0009-2614(89)87234-3
Lee, 1988, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37, 785, 10.1103/PhysRevB.37.785
Stephens, 1994, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 98, 11623, 10.1021/j100096a001
Hay, 1985, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys., 82, 270, 10.1063/1.448799
Hay, 1985, Ab initio effective core potentials for molecular calculations. Potentials for K–Au including the outermost core orbitals, J. Chem. Phys., 82, 299, 10.1063/1.448975
Hay, 1985, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 82, 284, 10.1063/1.448800
Fukui, 1981, The path of chemical reactions – the IRC approach, Acc. Chem. Res., 14, 363, 10.1021/ar00072a001
Barone, 1998, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A, 102, 1995, 10.1021/jp9716997
Cossi, 2003, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem., 24, 669, 10.1002/jcc.10189
Takano, 2005, Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules, J. Chem. Theory Comput., 1, 70, 10.1021/ct049977a