Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lưới được xử lý bằng chất đuổi DEET (N,N-diethyl-meta-toluamide)/PMD (para-menthane-3,8-diol) làm tăng số lượng bắt được Culicoides trong bẫy ánh sáng
Tóm tắt
Ruồi gặm nhấm (Culicoides spp.) là tác nhân truyền bệnh vi-rút bluetongue và Schmallenberg. Việc xử lý các hàng rào lưới là một phương pháp phổ biến để ngăn chặn bệnh lây truyền qua côn trùng và đã được đề xuất như là một cách để hạn chế sự xâm nhập của Culicoides vào các tòa nhà hoặc phương tiện vận chuyển gia súc. Việc đánh giá sử dụng động vật là tốn kém, khó khăn về mặt logistics và phải được phê duyệt đạo đức. Do đó, việc sàng lọc ban đầu các chất đuổi/thuốc diệt côn trùng được thực hiện bằng cách áp dụng các điều trị lên các lồng lưới (2 mm) xung quanh các bẫy ánh sáng Onderstepoort. Năm loại điều trị thương mại được áp dụng cho các lồng theo tỷ lệ ứng dụng của nhà sản xuất: kiểm soát (nước), bendiocarb, chất đuổi DEET/p-menthane-3,8-diol (PMD), Flygo (chất đuổi dựa trên terpenoid) và lambda-cyhalothrin. Thiết kế thực nghiệm là một hình vuông Latin 5 × 5, được lặp lại theo thời gian và thực hiện hai lần. Một cách không tương đồng, các bẫy xung quanh lưới được điều trị bằng chất đuổi DEET/PMD bắt được từ ba đến bốn lần nhiều hơn nhóm Culicoides Obsoletus (nhóm ruồi gặm phổ biến nhất) so với các điều trị khác. Giả thuyết được đề xuất là các nhóm Culicoides Obsoletus đang thể hiện phản ứng theo liều lượng với DEET/PMD, được thu hút ở nồng độ thấp và bị đuổi ở nồng độ cao hơn nhưng sức hấp dẫn ánh sáng mạnh từ bẫy Onderstepoort là đủ để vượt qua sự đuổi ở khoảng cách gần. Nghiên cứu này không ngụ ý rằng DEET/PMD là một chất đuổi không hiệu quả đối với ruồi gặm Culicoides trong sự hiện diện của một động vật mà nên thận trọng trong việc diễn giải các thử nghiệm sinh học bằng bẫy ánh sáng.
Từ khóa
Tài liệu tham khảo
Akogbeto M, Padonou GG, Bankole HS, Gazard DK, Gbedjissi GL (2011) Dramatic decrease in malaria transmission after large-scale indoor residual spraying with bendiocarb in Benin, an area of high resistance of Anopheles gambiae to pyrethroids. Am J Trop Med Hyg 85(4):586–593. doi:10.4269/ajtmh.2011.10-0668
Baker T, Carpenter S, Gubbins S, Newton R, Lo Iacono G, Wood J, Harrup LE (2015) Can insecticide-treated netting provide protection for equids from Culicoides biting midges in the United Kingdom? Parasites & Vectors 8(1):1–17. doi:10.1186/s13071-015-1182-x
Bauer B, Jandowsky A, Schein E, Mehlitz D, Clausen P-H (2009) An appraisal of current and new techniques intended to protect bulls against Culicoides and other haematophagous nematocera: the case of Schmergow, Brandenburg, Germany. Parasitol Res 105(2):359–365. doi:10.1007/s00436-009-1410-4
Baylis M, Parkin H, Kreppel K, Carpenter S, Mellor P, McIntyre K (2010) Evaluation of housing as a means to protect cattle from Culicoides biting midges, the vectors of bluetongue virus. Med Vet Entomol 24(1):38–45. doi:10.1111/j.1365-2915.2009.00842.x
Boorman J (2011) A short key to British Culicoides of veterinary importance., www.culicoides.net/taxonomy/identification-keys/UK01-1 Accessed 3 July 2012
Braverman Y, Chizov-Ginzburg A (1997) Repellency of synthetic and plant-derived preparations for Culicoides imicola. Med Vet Entomol 11(4):355–360. doi:10.1111/j.1365-2915.1997.tb00422.x
Braverman Y, Chizov-Ginzburg A, Mullens BA (1999) Mosquito repellent attracts Culicoides imicola (Diptera: Ceratopogonidae). J Med Entomol 36(1):113–115. doi:10.1093/jmedent/36.1.113
Braverman Y, Wegis M, Mullens B (2000) Response of Culicoides sonorensis (Diptera: Ceratopogonidae) to 1-octen-3-ol and three plant-derived repellent formulation in the field. J Am Mosq Control Assoc 16(2):158–163
Braverman Y, Chizov-Ginzburg A, Pener H, Wilamowski A (2004) Susceptibility and repellency of Culicoides imicola and Culex pipiens to lambda-cyhalothrin. Vet Ital 40(3):336–339
Calvete C, Estrada R, Miranda MA, Del Rio R, Borrás D, Beldron FJ, Martínez A, Calvo AJ, Lucientes J (2010) Protection of livestock against bluetongue virus vector Culicoides imicola using insecticide-treated netting in open areas. Med Vet Entomol 24(2):169–175. doi:10.1111/j.1365-2915.2009.00858.x
Carpenter S, Mellor PS, Torr SJ (2008) Control techniques for Culicoides biting midges and their application in the U.K. and northwestern Palaearctic. Med Vet Entomol 22(3):175–187. doi:10.1111/j.1365-2915.2008.00743.x
DeGennaro M (2015) The mysterious multi-modal repellency of DEET. Fly 9(1):45–51. doi:10.1080/19336934.2015.1079360
DeGennaro M et al (2013) orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498(7455):487–491. doi:10.1038/nature12206
Del Río R, Barceló C, Lucientes J, Miranda MA (2014a) Detrimental effect of cypermethrin treated nets on Culicoides populations (Diptera; Ceratopogonidae) and non-targeted fauna in livestock farms. Vet Parasitol 199(3–4):230–234. doi:10.1016/j.vetpar.2013.10.014
Del Río R, Barcelo C, Paredes-Esquivel C, Lucientes J, Miranda MA (2014b) Susceptibility of Culicoides species biting midges to deltamethrin-treated nets as determined under laboratory and field conditions in the Balearic Islands, Spain. Med Vet Entomol 28(4):414–420. doi:10.1111/mve.12072
Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319(5871):1838–1842. doi:10.1126/science.1153121
Dogan EB, Ayres JW, Rossignol PA (1999) Behavioural mode of action of deet: inhibition of lactic acid attraction. Med Vet Entomol 13(1):97–100. doi:10.1046/j.1365-2915.1999.00145.x
Dubitskii AM (1966) Positive reaction of mosquitoes and biting midges to repellents [In Russian]. Izv Akad Nauk Kaz SSR Ser Biol 1:53–56
Dyce A (1969) The recognition of nulliparous and parous Culicoides (Diptera: Ceratopogonidae) without dissection. J Aust Entomol Soc 8(1):11–15
González M, Venter GJ, López S, Iturrondobeitia JC, Goldarazena A (2014) Laboratory and field evaluations of chemical and plant-derived potential repellents against Culicoides biting midges in northern Spain. Med Vet Entomol 28(4):421–431. doi:10.1111/mve.12081
Guillet P, N’guessan R, Darriet F, Traore‐Lamizana M, Chandre F, Carnevale P (2001) Combined pyrethroid and carbamate ‘two‐in‐one’ treated mosquito nets: field efficacy against pyrethroid‐resistant Anopheles gambiae and Culex quinquefasciatus. Med Vet Entomol 15(1):105–112. doi:10.1046/j.1365-2915.2001.00288.x
Jess S, Thompson GM, Clawson S, Forsythe IWN, Rea I, Gordon AW, Murchie AK (2016) Surveillance of biting midges (Culicoides spp.) in Northern Ireland: influence of seasonality, surrounding habitat and livestock housing. Med Vet Entomol, In press
Kline DL, Bernier UR, Posey KH, Barnard DR (2003) Olfactometric evaluation of spatial repellents for Aedes aegypti. J Med Entomol 40(4):463–467. doi:10.1603/0022-2585-40.4.463
Krell F-T, Simon U (2003) Dung beetles attracted by a commercial insect repellent (Col., Scarabaeidae, Aphidiinae). Entomol Mon Mag 139:91–96
Leal WS (2014) The enigmatic reception of DEET — the gold standard of insect repellents. Curr Opin Insect Sci 6:93–98. doi:10.1016/j.cois.2014.10.007
Lucia A, Zerba E, Masuh H (2013) Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relationships. Parasitol Res 112(12):4267–4272. doi:10.1007/s00436-013-3618-6
Mehr Z, Rutledge L, Buescher M, Gupta RK, Zakaria M (1990) Attraction of mosquitoes to diethyl methylbenzamide and ethyl hexanediol. J Am Mosq Control Assoc 3(3):469–476
Mellor PS, Boorman J, Baylis M (2000) Culicoides biting midges: their role as arbovirus vectors. Annu Rev Entomol 45(1):307–340
Page PC, Labuschagne K, Nurton JP, Venter GJ, Guthrie AJ (2009) Duration of repellency of N, N-diethyl-3-methylbenzamide, citronella oil and cypermethrin against Culicoides species when applied to polyester mesh. Vet Parasitol 163(1–2):105–109. doi:10.1016/j.vetpar.2009.03.055
Page PC, Labuschagne K, Venter GJ, Schoeman JP, Guthrie AJ (2014) Field and in vitro insecticidal efficacy of alphacypermethrin-treated high density polyethylene mesh against Culicoides biting midges in South Africa. Vet Parasitol 203(1–2):184–188. doi:10.1016/j.vetpar.2014.02.051
Phillips MA, Croteau RB (1999) Resin-based defenses in conifers. Trends Plant Sci 4(5):184–190. doi:10.1016/S1360-1385(99)01401-6
Pickett JA, Birkett MA, Logan JG (2008) DEET repels ORNery mosquitoes. Proc Natl Acad Sci USA 105(36):13195–13196. doi:10.1073/pnas.0807167105
Schmahl G, Walldorf V, Klimpel S, Al-Quraishy S, Mehlhorn H (2008) Efficacy of Oxyfly™ on Culicoides species—the vectors of Bluetongue virus—and other insects. Parasitol Res 103(5):1101–1103. doi:10.1007/s00436-008-1098-x
Syed Z, Leal WS (2008) Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci USA 105(36):13598–13603. doi:10.1073/pnas.0805312105
Thompson GM, Jess S, Gordon AW, Murchie AK (2014) Sticky-trapping biting midges (Culicoides spp.) alighting on cattle and sheep: effects of trap colour and evidence for host preference. Parasitol Res 113:3085–3094. doi:10.1007/s00436-014-3974-x
Trigg JK (1996) Evaluation of a eucalyptus-based repellent against Culicoides impunctatus (Diptera: Ceratopogonidae) in Scotland. J Am Mosq Control Assoc 12(2):329–330
Trigg JK, Hill N (1996) Laboratory evaluation of a Eucalyptus-based repellent against four biting arthropods. Phytother Res 10(4):313–316. doi:10.1002/(SICI)1099-1573(199606)10:4<313::AID-PTR854>3.0.CO;2-O
Van Ark H, Meiswinkel R (1992) Subsampling of large light trap catches of Culicoides (Diptera: Ceratopogonidae). Onderstepoort J Vet Res 59(3):183
Venter GJ, Labuschagne K, Boikanyo SNB, Morey L, Snyman MG (2011) The repellent effect of organic fatty acids on Culicoides midges as determined with suction light traps in South Africa. Vet Parasitol 181(2–4):365–369. doi:10.1016/j.vetpar.2011.04.034
Venter GJ, Labuschagne K, Boikanyo SNB, Morey L (2014) Assessment of the repellent effect of citronella and lemon eucalyptus oil against South African Culicoides species. J S Afr Vet Assoc 85(1):1–5. doi:10.4102/jsava.v85i1.992
Xu P, Choo Y-M, De La Rosa A, Leal WS (2014) Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci USA 111(46):16592–16597. doi:10.1073/pnas.1417244111