DAViS: a unified solution for data collection, analyzation, and visualization in real-time stock market prediction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Afzali M, Kumar S (2019) Text document clustering: issues and challenges. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEE, pp 263–268
Akhtar MS, Gupta D, Ekbal A, Bhattacharyya P (2017) Feature selection and ensemble construction: a two-step method for aspect based sentiment analysis. Knowl Based Syst 125(Supplement C):116–135 (ISSN 0950-7051)
Alhassan J, Abdullahi M, Lawal J (2014) Application of artificial neural network to stock forecasting-comparison with ses and arima. J Comput Model 4(2):179–190
Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Exp Syst Appl 77(Supplement C):236–246 (ISSN 0957-4174)
Blei DM, Ng AY, Jordan MI (2003a) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993–1022
Blei DM, Ng AY, Jordan MI (2003b) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993–1022
Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2(1):1–8 (ISSN 1877-7503)
Bomfim AN (2003) Pre-announcement effects, news effects, and volatility: monetary policy and the stock market. J Bank Finance 27:133–151
Camras L (1981) Emotion: theory, research and experience. Am J Psychol 94(2):370–372 (ISSN 00029556)
Chattupan A, Netisopakul P (2015) Thai stock news sentiment classification using wordpair features. In: The 29th Pacific Asia conference on language, information and computation, pp 188–195
Cheng C, Xu W, Wang J (2012) A comparison of ensemble methods in financial market prediction. In: 2012 Fifth international joint conference on computational sciences and optimization. IEEE, pp 755–759
Colas F, Brazdil P (2006) Comparison of svm and some older classification algorithms in text classification tasks. In IFIP international conference on artificial intelligence in theory and practice. Springer, pp 169–178
Fodor IK (2002) A survey of dimension reduction techniques. Center Appl Sci Comput Lawrence Livermore Natl Lab 9:1–18
Gopinathan R, Durai S (2019) Stock market and macroeconomic variables: new evidence from India. Financ Innov 5:12. https://doi.org/10.1186/s40854-019-0145-1
Hagenau M, Liebmann M, Neumann D (2013) Automated news reading: stock price prediction based on financial news using context-capturing features. Decis Supp Syst 55(3):685–697 (ISSN 0167-9236)
Hu D, Schwabe G, Li X (2015) Systemic risk management and investment analysis with financial network analytics: research opportunities and challenges. Financ Innov 1:12. https://doi.org/10.1186/s40854-015-0001-x
Huang W, Wu Z, Mitra P, Giles CL (2014) Refseer: a citation recommendation system. In IEEE/ACM joint conference on digital libraries. IEEE, pp 371–374
Jin F, Self N, Saraf P, Butler P, Wang W, Ramakrishnan N (2013) Forex-foreteller: currency trend modeling using news articles. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’13. ACM, New York, NY, USA, pp 1470–1473. ISBN 978-1-4503-2174-7
Kou G, Akdeniz ÖO, Dinçer H, Yüksel S (2021) Fintech investments in European banks: a hybrid it2 fuzzy multidimensional decision-making approach. Financ Innov 7(1):1–28
Lertsuksakda R, Netisopakul P, Pasupa K (2014) Thai sentiment terms construction using the hourglass of emotions. In: 2014 6th international conference on knowledge and smart technology (KST), pp 46–50
Li X, Xie H, Chen L, Wang J, Deng X (2014) News impact on stock price return via sentiment analysis. Knowl Based Syst 69(Supplement C):14–23. https://doi.org/10.1016/j.knosys.2014.04.022 (ISSN 0950-7051)
Lim S, Tucker CS (2019) Mining twitter data for causal links between tweets and real-world outcomes. Exp Syst Appl X 3:100007
Liu Z, Huang W, Zheng Y, Sun M (2010) Automatic keyphrase extraction via topic decomposition. In: Proceedings of the 2010 conference on empirical methods in natural language processing, pp 366–376
Manning CD, Raghavan P, Schütze H (2009) Introduction to information retrieval, chapter Stemming and lemmatization (2.2.4), pp 32–34. Cambridge University Press, Cambridge, England
Mao H, Counts S, Bollen J (2011) Predicting financial markets: comparing survey, news, twitter and search engine data. arXiv preprint arXiv:1112.1051
Nassirtoussi AK, Aghabozorgi S, Wah TY, Ngo DCL (2015) Text mining of news-headlines for forex market prediction: a multi-layer dimension reduction algorithm with semantics and sentiment. Exp Syst Appl 42(1):306–324 (ISSN 0957-4174)
Nayak RK, Mishra D, Rath AK (2015) A naïve svm-knn based stock market trend reversal analysis for Indian benchmark indices. Appl Soft Comput 35:670–680
Nguyen TH, Shirai K, Velcin J (2015) Sentiment analysis on social media for stock movement prediction. Exp Syst Appl 42(24):9603–9611 (ISSN 0957-4174)
Noraset T, Lowphansirikul L, Tuarob S (2021) Wabiqa: a wikipedia-based thai question-answering system. Inf Process Manag 58(1):102431
Nti IK, Adekoya AF, Weyori BA (2020) Efficient stock-market prediction using ensemble support vector machine. Open Comput Sci 10(1):153–163. https://doi.org/10.1515/comp-2020-0199
Picek S, Heuser A, Jovic A, Bhasin S, Regazzoni F (2019) The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans Cryptogr Hardware Embed Syst 2019(1):1–29
Schumaker RP, Zhang Y, Huang C-N, Chen H (2012) Evaluating sentiment in financial news articles. Decis Supp Syst 53(3):458–464 (ISSN 0167-9236)
Seker SE, Mert C, Al-Naami K, Ayan U, Ozalp N (2013) Ensemble classification over stock market time series and economy news. In: 2013 IEEE international conference on intelligence and security informatics. IEEE, pp 272–273
Selvamuthu D, Kumar V, Mishra A (2019) Indian stock market prediction using artificial neural networks on tick data. Financ Innov 5:12. https://doi.org/10.1186/s40854-019-0131-7
Stoean C, Paja W, Stoean R, Sandita A (2019) Deep architectures for long-term stock price prediction with a heuristic-based strategy for trading simulations. PLoS ONE 14(10):e0223593
Tuarob S, Mitrpanont JL (2017) Automatic discovery of abusive thai language usages in social networks. In: International conference on Asian digital libraries. Springer, pp 267–278
Tuarob S, Chu W, Chen D, Tucker C (2015) Twittdict: extracting social oriented keyphrase semantics from twitter. In: Association for computational linguistics (ACL), pp 25–31, 01
Tuarob S, Assavakamhaenghan N, Tanaphantaruk W, Suwanworaboon P, Hassan S-U, Choetkiertikul M (2021) Automatic team recommendation for collaborative software development. Empir Software Eng 26(4):1–53
Vu TT, Chang S, Ha QT, Collier N (2012) An experiment in integrating sentiment features for tech stock prediction in twitter. In: Proceedings of the workshop on information extraction and entity analytics on social media data. Mumbai, pp 23–38
Wen F, Xu L, Ouyang G, Kou G (2019) Retail investor attention and stock price crash risk: evidence from China. Int Rev Financ Anal 65:101376
Wu W, Chen J, Xu L, He Q, Tindall M (2019) A statistical learning approach for stock selection in the Chinese stock market. Financ Innov 5:12. https://doi.org/10.1186/s40854-019-0137-1
Zha Q, Kou G, Zhang H, Liang H, Chen X, Li C-C, Dong Y (2021) Opinion dynamics in finance and business: a literature review and research opportunities. Financ Innov 6(1):1–22
Zhong X, Enke D (2019a) Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financ Innov 5:12. https://doi.org/10.1186/s40854-019-0138-0
Zhong X, Enke D (2019b) Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financ Innov 5:12. https://doi.org/10.1186/s40854-019-0138-0