Cấu trúc tế bào của các tế bào biểu mô sắc tố võng mạc: Sự khác biệt giữa các loài trong mẫu biểu hiện chỉ ra sự độc lập của chức năng tế bào với bảng bổ sung cụ thể của protein cơ tế bào

Katsushi Owaribe1, Jürgen Kartenbeck1, Elisabeth Rungger-Brändle2, Werner W. Franke1
1Division of Membrane Biology and Biochemistry, Institute of Cell and Tumor Biology, German Cancer Research Center, Heidelberg, Germany
2Laboratory of Electron Microscopy, Ophtalmological Clinic, University of Geneva, Geneva, Switzerland

Tóm tắt

Trong sự phát triển mô của động vật có xương sống, một con đường phân hóa tế bào nhất định thường liên quan đến một mẫu biểu hiện của một bộ protein cơ tế bào cụ thể, bao gồm các protein sợi trung gian (IF) khác nhau và các protein khớp nối, mà giống nhau ở nhiều loài khác nhau. Biểu mô sắc tố võng mạc (RPE) là một lớp tế bào có tính hướng cực với các đặc điểm hình thái rất tương đồng và chức năng gần như giống hệt nhau ở các loài động vật có xương sống khác nhau. Tuy nhiên, trong các nghiên cứu sinh hóa và nghiên cứu miễn dịch hóa về các protein cơ tế bào của những tế bào này, chúng tôi đã ghi nhận những sự khác biệt đáng kể giữa các loài. Trong khi các tế bào RPE của gà chỉ chứa các IF loại vimentin và không có desmosom cũng như các protein desmosom, các tế bào RPE của các loài lưỡng cư (Rana ridibunda, Xenopus laevis) và động vật có vú (chuột, chuột lang, thỏ, bò, người) khác lại biểu hiện các cytokeratin 8 và 18 hoặc là các protein IF duy nhất của chúng, hoặc kết hợp với các IF vimentin như ở chuột lang và một số phân nhóm nhất định của các tế bào RPE bò. Plakoglobin, một protein mảng phổ biến cho desmosom và zonula adhaerens, tồn tại trong các tế bào RPE của tất cả các loài, trong khi desmoplakin và desmoglein chỉ được xác định trong các desmosom RPE của ếch và bò, bao gồm cả các kiểu tế bào RPE bò mà trong đó các cytokeratin đã biến mất và các IF vimentin là các IF duy nhất hiện diện. Những phát hiện đầy thách thức này cho thấy rằng cả hai IF cytokeratin và desmosom đều không cần thiết cho việc thiết lập và chức năng của một lớp tế bào biểu mô có tính hướng cực và rằng cùng một kiến trúc tế bào cơ bản có thể đạt được thông qua các chương trình biểu hiện khác nhau của các protein cơ tế bào. Những sự khác biệt trong thành phần của bộ khung cơ tế bào RPE cho thấy thêm rằng, ít nhất trong mô này, một chương trình biểu hiện cụ thể của các protein IF và desmosomal không liên quan đến các chức năng của tế bào RPE, mà rất giống nhau ở các loài khác nhau.

Từ khóa

#biểu mô sắc tố võng mạc #protein cơ tế bào #cytokeratin #desmosom #sự khác biệt giữa các loài

Tài liệu tham khảo

Achtstätter T, Hatzfeld M, Quinlan RA, Parmelee D, Franke WW (1986) Separation of cytokeratin polypeptides by gel electrophoretic and Chromatographic techniques and their identification by immunoblotting. Methods Enzymol 134:355–371 Albert DM, Buyukmihci N (1979) Tissue culture of the retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 277–292 Barritault D, Courtois Y, Paulin D (1980) Biochemical evidence that vimentin is the only in vivo constituent of the intermediate filaments in adult bovine epithelial lens cells. Biol Cell 39:335–338 Blose SH, Meltzer DI (1981) Visualization of the 10 nm-filament vimentin rings in vascular endothelial cells in situ. Exp Cell Res 135:299–304 Bok D, Young RW (1979) Phagocytic properties of the retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 148–174 Bommeli W (1972) Die Ultrastruktur der Milchdrüsenalveole des Rindes, insbesondere Basalfalten des Epithels und der Mitochondrien-Desmosomen-Komplex. Zbl Vet Med C 1:299–325 Burnside B, Adler R, O'Connor P (1983) Retinomotor pigment migration in the teleost retinal pigment epithelium. Invest Ophthalmol Vis Sci 24:1–25 Chisholm JC, Houliston E (1987) Cytokeratin filament assembly in the preimplantation mouse embryo. Development 101:565–582 Cohen SM, Gorbsky G, Steinberg MS (1983) Immunochemical characterization of related families of glycoproteins in desmosomes. J Biol Chem 258:2621–2627 Connell ND, Rheinwald JG (1983) Regulation of the cytoskeleton in mesothelial cells: Reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34:245–253 Coulombre AJ (1979) Roles of the retinal pigment epithelium in the development of ocular tissues. In: Zinn KM, Marmor MF (eds) The Pigment Epithelium. Harvard University Press, Cambridge, pp 53–57 Cowin P, Kapprell H-P, Franke WW (1985a) The complement of desmosomal plaque proteins in different cell types. J Cell Biol 101:1442–1454 Cowin P, Franke WW, Grund C, Kapprell H-P, Kartenbeck J (1985b) The desmosome-intermediate filament complex. In: Edelman G, Thiery JP (eds) The Cell in Contact. John Wiley and Sons, Inc., New York, pp 427–460 Cowin P, Kapprell H-P, Franke WW, Tamkun J, Hynes RO (1986) Plakoglobin: A protein common to different kinds of intercellular adhering junctions. Cell 46:1063–1073 Crawford B (1980) Development of the junctional complex during differentiation of chick pigmented epithelial cells in clonal culture. Invest Ophthalmol Visual Sci 19:223–237 Crawford B, Cloney RA, Cahn RD (1972) Cloned pigmented cells; the affects of cytochalasin B on ultrastructure and behavior. Z Zellforsch 130:135–151 Dembitzer HM, Herz F, Schermer A, Wolley RC, Koss LG (1980) Desmosome development in an in vitro model. J Cell Biol 85:695–702 Docherty RJ, Edwards JG, Garrod DR, Mattey DL (1984) Chick embryonic pigmented retina is one of the group of epithelioid tissues that lack cytokeratins and desmosomes and have intermediate filaments composed of vimentin. J Cell Sci 71:61–74 Drenkhahn D, Wagner H-J (1985) Relation of retinomotor responses and contractile proteins in vertebrate retinas. Eur J Cell Biol 37:156–168 Ducibella TD, Albertini F, Anderson E, Biggers JD (1975) The preimplantation mouse embryo: Characterization of intercellular junctions and their appearance during development. Dev Biol 45:231–250 Franke WW, Lüder MR, Kartenbeck J, Zerban H, Keenan TW (1976) Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol 69:173–195 Franke WW, Weber K, Osborn M, Schmid E, Freudenstein C (1978) Antibody to prekeratin. Decoration of tonofilament-like array in various cells of epithelial character. Exp Cell Res 116:429–445 Franke WW, Appelhans B, Schmid E, Freudenstein C, Osborn M, Weber K (1979a) Identification and characterization of epithelial cells in mammalian tissues by immunofluorescence microscopy using antibodies to prekeratin. Differentiation 15:7–25 Franke WW, Grund C, Schmid E (1979b) Intermediate-sized filaments present in Sertoli cells are of the vimentin type. Eur J Cell Biol 19:269–275 Franke WW, Schmid E, Osborn M, Weber K (1979c) Intermediate-sized filaments of human endothelial cells. J Cell Biol 81:570–580 Franke WW, Schmid E, Winter S, Osborn M, Weber K (1979d) Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res 123:25–46 Franke WW, Denk H, Kalt R, Schmid E (1981a) Biochemical and immunological identification of cytokeratin proteins present in hepatocytes of mammalian liver tissue. Exp Cell Res 131:299–318 Franke WW, Schmid E, Grund C, Müller H, Engelbrecht I, Moll R, Stadler J, Jarasch E-D (1981 b) Antibodies to high molecular weight polypeptides of desmosomes: specific localization of a class of junctional proteins in cells and tissues. Differentiation 20:217–241 Franke WW, Moll R, Schiller DL, Schmid E, Kartenbeck J, Mueller H (1982a) Desmoplakins of epithelial and myocardial desmosomes are immunologically and biochemically related. Differentiation 23:115–127 Franke WW, Schmid E, Grund C, Geiger B (1982b) Intermediate filament proteins and nonfilamentous structures: transient disintegration and inclusion of subunit proteins in granular aggregates. Cell 30:103–113 Franke WW, Winter S, Overbeck J von, Gudat F, Heitz PU, Stähli C (1987) Identification of the conserved conformation-dependent cytokeratin epitope recognized by monoclonal antibody (lu-5). Virchows Arch A 411:137–147 Fujimoto T, Singer SJ (1986) Immunocytochemical studies of endothelial cells in vivo. I. The presence of desmin only, or of desmin plus vimentin, or vimentin only, in the endothelial cells of different capillaries of the adult chicken. J Cell Biol 103:2775–2786 Gigi O, Geiger B, Eshhar Z, Moll R, Schmid E, Winter S, Schiller DL, Franke WW (1982) Detection of a cytokeratin determinant common to diverse epithelial cells by a broadly cross-reacting monoclonal antibody. EMBO J 1:1429–1437 Giudice GJ, Cohen SM, Patel NH, Steinberg MS (1984) Immunological comparison of desmosomal components from several bovine tissue. J Cell Biochem 26:35–45 Gorbsky G, Steinberg MS (1981) Isolation of the intercellular glycoproteins of desmosomes. J Cell Biol 90:243–248 Gordon SR, Essner E (1987) Investigation on circumferential microfilament bundles in rat retinal pigment epithelium. Eur J Cell Biol 44:97–104 Granger BL, Lazarides E (1984) Expression of the intermediate-filament-associated protein synemin in chicken lens cells. Mol Cell Biol 4:1943–1950 Guillouzo A, Guillouzo C, Boismard M (1978) Association of mitochondria with desmosomes in rat hepatocytes cultured in the presence of phenobarbital or in the presence of glucose at a high concentration. Biol Cell 31:315–318 Hiscott PS, Grierson I, McLeod D (1984) Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol 68:708–715 Hudspeth AJ, Yee AG (1973) The intercellular junctional complexes of retinal pigment epithelia. Invest Ophthalmol 12:354–365 Jackson BW, Grund C, Schmid E, Bürki K, Franke WW, Illmensee K (1980) Formation of cytoskeletal elements during mouse embryogenesis. I. Intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos. Differentiation 17:161–179 Jahn L, Fouquet B, Rohe K, Franke WW (1987) Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man. Differentiation 36:234–254 Kartenbeck J, Schmid E, Franke WW, Geiger B (1982) Different modes of internalization of proteins associated with adherens junctions and desmosomes: experimental separation of lateral contacts induces endocytosis of desmosomal plaque material. EMBO J 1:725–732 Kartenbeck J, Franke WW, Moser JG, Stoffels U (1983) Specific attachment of desmin filaments to desmosomal plaques in cardiac myocytes. EMBO J 2:735–742 Kartenbeck J, Schwechheimer K, Moll R, Franke WW (1984) Attachment of vimentin filaments to desmosomal plaques in human meningiomal cells and arachnoidal tissue. J Cell Biol 98:1072–1081 Kemler R, Brûlet P, Schnebelen M-T, Gaillard J, Jacob F (1981) Reactivity of monoclonal antibodies against intermediate filament proteins during embryonic development. J Embryol Exp Morphol 64:45–60 Khyse-Anderson J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209 Kim KH, Stellmach V, Javors J, Fuchs E (1987) Regulation of human mesothelial cell differentiation: opposing roles of retinoids and epidermal growth factor in the expression of intermediate filament proteins. J Cell Biol 105:3039–3051 Kuwabara T (1979) Species differences in the rental pigment epithelium. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 58–82 Kuwabara T, Cogan DG (1983) The retina. In: Weiss L, Greep RO (eds) Histology. Fifth Edition. McGraw-Hill Book Company, New York, pp 1164–1172 Lee CS, Morgan G, Wooding FBP (1979) Mitochondria and mitochondria tonofilament-desmosomal associations in the mammary gland secretory epithelium of lactating cows. J Cell Sci 38:125–135 Lentz TL, Trinkaus JP (1971) Differentiation of the junctional complex of surface cells in the developing Fundulus blastoderm. J Cell Biol 48:455–472 Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratin polypeptides: patterns of expression of specific cytokeratins in normal epithelia, tumors and cultured cells. Cell 31:11–24 Moll R, Cowin P, Kapprell H-P, Franke WW (1986) Desmosomal proteins: New markers for identification and classification of tumors. Lab Invest 54:4–25 Moll R, Achtstätter T, Becht E, Calcarova-Ständer J, Ittensohn M, Franke WW (1988) Cytokeratins in normal and malignant epithelium. Maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines. Am J Pathol 132:111–132 Müller H, Franke WW (1983) Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque. J Mol Biol 163:647–671 Mund ML, Rodrigues MM (1979) Embryology of the human retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 45–52 Opas M, Kalnins VI (1985) Spatial distribution of cortical proteins in cells of epithelial sheets. Cell Tissue Res 239:451–454 Opas M, Turkson K, Kalnins VI (1985) Adhesiveness and distribution of vinculin and spectrin in retinal pigmented epithelial cells during growth and differentiation in vitro. Dev Biol 107:269–280 Osborn M, Debus E, Weber K (1984) Monoclonal antibodies specific for vimentin. Eur J Cell Biol 34:137–143 Oshima RG, Howe WE, Klier FG, Adamson ED, Shevinsky LH (1983) Intermediate filament protein synthesis in preimplantation murine embryos. Dev Biol 99:447–455 Owaribe K, Eguchi G (1985) Increase in actin contents and elongation of apical projections in retinal pigmented epithelial cells during development of the chicken eye. J Cell Biol 101:590–596 Owaribe K, Masuda H (1982) Isolation and characterization of circumferential microfilament bundles from retinal pigmented epithelial cells. J Cell Biol 95:310–315 Owaribe K, Sugino H, Masuda H (1986) Characterization of intermediate filaments and their structural organization during epithelium formation in pigmented epithelial cells of the retina in vitro. Cell Tissue Res 244:87–93 Paranko J, Kallajoki M, Pelliniemi LJ, Lehto V-P, Virtanen I (1986) Transient coexpression of cytokeratin and vimentin in differentiating rat Sertoli cells. Dev Biol 117:35–44 Philp NJ, Nachmias VT (1985) Components of the cytoskeleton in the retinal pigmented epithelium of the chick. J Cell Biol 101:358–362 Pruss RM, Mirsky R, Raff MC, Thorpe R, Dowding AJ, Anderton BH (1981) All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell 27:419–428 Ramaekers FCS, Osborn M, Schmid E, Weber K, Bloemendal H, Franke WW (1980) Identification of the cytoskeletal proteins in lens-forming cells, a special epithelioid cell type. Exp Cell Res 127:309–327 Regauer S, Franke WW, Virtanen I (1985) Intermediate filament cytoskeleton of amnion epithelium and cultured amnion epithelial cells: Expression of epidermal cytokeratins in cells of a simple epithelium. J Cell Biol 100:997–1009 Rungger-Brändle E, Achtstätter T, Franke WW (1988) Glial elements in amphibian optic nerve formed by cells containing cytokeratin filaments and desmosomes (submitted) Schliwa M (1982) Action of cytochalasin D on cytoskeletal networks. J Cell Biol 92:79–91 Schmelz M, Duden R, Cowin P, Franke WW (1986) A constitutive transmembrane glycoprotein of Mr 165000 (desmoglein) in epidermal and non-epidermal desmosomes. II. Immunolocalization and microinjection. Eur J Cell Biol 42:184–199 Schmid E, Tapscott S, Bennett GS, Groop J, Fellini SA, Holtzer H, Franke WW (1979) Differential location of different types of intermediate-sized filaments in various tissues of the chick embryo. Differentiation 15:27–40 Schmid E, Schiller DL, Grund C, Stadler J, Franke WW (1983) Tissue type specific expression of intermediate filament proteins in a cultured epithelial cell line from bovine mammary gland. J Cell Biol 96:37–50 Shaw G, Weber K (1984) The intermediate filament complement of retina: a comparison between different mammalian species. Eur J Cell Biol 33:95–104 Steinberg RH, Wood I (1979) The relationship of the retinal pigment epithelium to photoreceptor outer segments in human retina. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 32–44 Sternlieb I (1969) Mitochondrion — desmosome complexes in human heptocytes. Z Zellforsch 93:249–253 Sun T-T, Shih C, Green H (1979) Keratin cytoskeletons in epithelial cells of internal organs. Proc Natl Acad Sci USA 76:2813–2817 Turksen K, Kalnins VI (1987) The cytoskeleton of chick retinal pigment epithelial cells in situ. Cell Tissue Res 248:95–101 Van Vorstenbosch CJAHV, Colenbrander B, Wensing CJG, Ramaekers FCS, Vooijs GP (1984) Cytoplasmic filaments in fetal and neonatal pig testis. Eur J Cell Biol 34:292–299 Venetianer A, Schiller DL, Magin T, Franke WW (1983) Cessation of cytokeratin expression in a rat hepatoma cell line lacking differentiated functions. Nature 305:730–733 Virtanen I, Lehto V-P, Lehtonen E, Vartio T, Stenman S, Kurki P, Wager O, Small JV, Dahl D, Badley RA (1981) Expression of intermediate filaments in cultured cells. J Cell Sci 50:45–63 Volberg T, Geiger B, Kartenbeck J, Franke WW (1986) Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ -ions. J Cell Biol 102:1832–1842 Young RW, Bok D (1979) Metabolism of the retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 103–123 Zinn KM, Benjamin-Henkind JV (1979) Anatomy of the human retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 3–52