Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hoạt tính genotoxic của thuốc diệt cỏ và thuốc diệt nấm đối với meristem rễ Triticum aestivum
Tóm tắt
Tác động độc hại với thực vật, độc hại với tế bào và độc tính gen của các loại thuốc trừ sâu với các cơ chế tác động khác nhau đã được nghiên cứu trong môi trường thủy canh của những cây mầm 2 ngày tuổi của Triticum aestivum. Tất cả các loại thuốc trừ sâu đã nghiên cứu (trừ metribuzin) đều biểu hiện độc tính với thực vật phụ thuộc vào liều lượng (cản trở sự phát triển của rễ chính và giảm sản lượng sinh khối rễ). Tất cả các loại thuốc trừ sâu đều không ảnh hưởng đến chỉ số phân bào ở meristem đỉnh rễ nhưng đã ảnh hưởng đến độ dài của một số pha trong quá trình phân bào. Các loại thuốc diệt cỏ làm tăng, trong khi đó các loại thuốc diệt nấm lại làm giảm độ dài của pha phân chia bào chất. Tất cả các thuốc trừ sâu (1 μg/mL) đều thể hiện hoạt tính genotoxic: tại meristem đỉnh rễ, số lượng tế bào có bất thường phân bào cao hơn đáng kể so với biến thể đối chứng (gấp 7-14 lần). Hoạt tính genotoxic của metribuzin và tebuconazole thấp hơn 2 lần so với tribenuron-methyl, fenoxaprop-P-ethyl, epoxiconazole và azoxystrobin. Độc tính gen của các loại thuốc trừ sâu đã nghiên cứu là sự kết hợp: tùy thuộc vào lớp thuốc trừ sâu, các tác động đứt mảnh hay tác động bất thường chiếm ưu thế.
Từ khóa
#thuốc trừ sâu #độc tính gen #Triticum aestivum #thuốc diệt cỏ #thuốc diệt nấm #hoạt tính độc hạiTài liệu tham khảo
Abdel-Wahab SI, Aioub AA, Salem RE, El-Sobki AE (2021) Do the herbicides pinoxaden, tribenuron-methyl, and pyroxsulam influence wheat (Triticum aestivum L.) physiological parameters? Environ Sci Pollut Res 28:51961–51970. https://doi.org/10.1007/s11356-021-14390-8
Ando D, Fujisawa T, Katagi T (2018) Metabolism of the strobilurin fungicide mandestrobin in wheat. J Agric Food Chem 66:10154–10162. https://doi.org/10.1021/acs.jafc.8b03639
Araujo GS, Abessa DMS, Soares AMVM, Loureiro S (2019) Multi-generational effects under single and pulse exposure scenarios in two monophyletic Daphnia species. Sci Total Environ 697:134031. https://doi.org/10.1016/j.scitotenv.2019.134031
Attia SM, Ahmad SF, Okash RM, Bakheet SA (2014) Aneugenic effects of epirubicin in somatic and germinal cells of male mice. PLoS One 9(10):e109942. https://doi.org/10.1371/journal.pone.0109942
Birchler JA (2013) Aneuploidy in plants and flies: the origin of studies of genomic imbalance. Semin Cell Dev Biol 24:315–319. https://doi.org/10.1016/j.semcdb.2013.02.004
Biswas S, Banerjee T, Harshang T, Patanjali N, Chinnusamy V, Mukhopadhyay A, Singh A (2021) Development of a QuEChERS-LCMS/MS method for simultaneous estimation of tebuconazole and chlormequat chloride in wheat crop. J Environ Sci Health B 56:212–221. https://doi.org/10.1080/03601234.2021.1882822
Bryant TR (1963) DNA synthesis and cell division in germinating onion I. Onset of DNA synthesis and mitosis. Caryologia 22:127–137. https://doi.org/10.1080/00087114.1969.10796331
Directory Pesticides.ru https://www.pesticidy.ru (accessed 10 March 2021)
Giorgetti L, Spanò C, Muccifora S, Bottega S, Barbieri F, Bellani L, Castiglione MR (2020) Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol Biochem 149:170–177. https://doi.org/10.1016/j.plaphy.2020.02.014
Global Business Data Platform https://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/ (accessed 12 March 2021)
He B, Dong J, Lin HY, Wang MY, Li XK, Zheng BF, Chen Q, Hao GF, Yang WC, Yang GF (2019) Pyrazole–isoindoline–1,3–dione hybrid: a promising scaffold for 4–hydroxyphenylpyruvate dioxygenase inhibitors. J Agric Food Chem 67:10844–10852. https://doi.org/10.1021/acs.jafc.9b04917
Jitareanu A, Padureanu S, Tataringa G, Tuchilus C, Stanescu U (2013) Evaluation of phytotoxic and mutagenic effects of some cinnamic acid derivatives using the Triticum test. Turk J Biol 37:748–756. https://doi.org/10.3906/biy-1304-39
Ju C, Zhang H, Yao S, Dong S, Cao D, Wang F, Fang H, Yu Y (2019) Uptake, translocation, and subcellular distribution of azoxystrobin in wheat plant (Triticum aestivum L.). J Agric Food Chem 67(24):6691–6699. https://doi.org/10.1021/acs.jafc.9b00361
Ju C, Dong S, Zhang H, Yao S, Wang F, Cao D, Xu S, Fang H, Yu Y (2020) Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum aestivum L.). Chemosphere 248:126024. https://doi.org/10.1016/j.chemosphere.2020.126024
Kaymak F, GökalpMuranli FD (2006) The genotoxic effects of Logran on Hordeum vulgare L. and Triticum aestivum L. Acta Biol Hung 57(1):71–80. https://doi.org/10.1556/abiol.57.2006.1.7
Koch E, Plassmann S, (2017) Critical aspects of integrated nonclinical drug development: concepts, strategies, and potential pitfalls. From: A comprehensive guide to toxicology in nonclinical drug development (Second edition), Chapter 2:7–38. https://doi.org/10.1016/B978-0-12-803620-4.00002-5
Kumar S (2010) Effect of 2,4–D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L. Cytol Genet 44:79–87. https://doi.org/10.3103/S0095452710020027
Liman R, Ciğerci İH, Öztürk NS (2015) Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pestic Biochem Physiol 118:38–42. https://doi.org/10.1016/j.pestbp.2014.11.007
Macar O (2021a) Multiple toxic effects of tetraconazole in Allium cepa L. meristematic cells. Environ Sci Pollut Res Int 28:10092–10099. https://doi.org/10.1007/s11356-020-11584-4
Macar TK (2021b) Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L. Environ Sci Pollut Res Int 28:2391–2399. https://doi.org/10.1007/s11356-020-10708-0
Mahapatra K, De S, Banerjee S, Roy S (2019) Pesticide mediated oxidative stress induces genotoxicity and disrupts chromatin structure in fenugreek (Trigonella foenum – graecum L.) seedlings. J Hazard Mater 369:362–374. https://doi.org/10.1016/j.jhazmat.2019.02.056
Malinowska E, Jankowski K, Sosnowski J, Wiśniewska-Kadżajan B (2015) Pesticide residues in cereal crop grains in Poland in 2013. Environ Monit Assess 187:1–7. https://doi.org/10.1007/s10661-015-4566-7
Mercado SAS, Caleño JDQ, Suárez JPR (2020) Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L. test. Chemosphere 249:126193. https://doi.org/10.1016/j.chemosphere.2020.126193
National Center for Biotechnology Information https://pubchem.ncbi.nlm.nih.gov/compound/. Accessed 17 March 2021
Prasad I, Pramer D (1968) Genetics effects of ferbam on Aspergillus and Allium cepa. Phytopathology 58:1188–1189
Qari S, Shehawy A (2020) Measurement of biorational effect of imidacloprid on some aphids spp. as well as on wheat (Triticum aestivum L.) using biochemical parameters and ISSR-PCR. J Food Biochem 44(8):e13257. https://doi.org/10.1111/jfbc.13257
Qu Q, Ke M, Ye Y, Zhang Q, Lu T, Zhang Z, Qian, (2019) Enantioselective oxidative stress induced by S-and Rac-metolachlor in wheat (Triticum aestivum L.) seedlings. Bull Environ Contam Toxicol 102(3):439–445. https://doi.org/10.1007/s00128-019-02565-6
Qu Q, Zhang Z, Li Y, Zhou Z, Ye Y, Lu T, Sun L, Qian H (2019b) Comparative molecular and metabolic responses of wheat seedlings (Triticum aestivum L.) to the imazethapyr enantiomers S-IM and R-IM. Sci Total Environ 692:723–731. https://doi.org/10.1016/j.scitotenv.2019.07.333
Rogan PG, Simon EW (1975) Root growth and the onset of mitosis in germinating Vicia faba. New Phytol 74:273–275. https://doi.org/10.1111/j.1469-8137.1975.tb02615.x
Sheikh N, Patowary H, Laskar RA (2020) Screening of cytotoxic and genotoxic potency of two pesticides (malathion and cypermethrin) on Allium cepa L. Mol Cell Toxicol 16:291–299. https://doi.org/10.1007/s13273-020-00077-7
State Register for Selection Achievements Admitted for Usage (National List). Vol.1 “Plant varieties” (official publication). – Moscow:FGBNU “Rosinformagrotekh”, 2019. – 516 pp. https://gossortrf.ru/wp-content/uploads/2019/07/REESTR_2019-3.pdf
Tateno M, Brabham C, DeBolt S (2016) Cellulose biosynthesis inhibitors—a multifunctional toolbox. J Exp Bot 67:533–542. https://doi.org/10.1093/jxb/erv489
Wang Z, Tian Z, Chen L, Zhang W, Zhang L, Li Y, Diao J, Zhou Z (2020) Stereoselective metabolism and potential adverse effects of chiral fungicide triadimenol on Eremias argus. Environ Sci Pollut Res Int 27:7823–7834. https://doi.org/10.1007/s11356-019-07205-4
Yang B, Qin C, Hu X, Xia K, Lu C, Gudda FO, Ma Z, Gao Y (2019) Enzymatic degradation of extracellular DNA exposed to chlorpyrifos and chlorpyrifos–methyl in an aqueous system. Environ Int 132:105087. https://doi.org/10.1016/j.envint.2019.105087
Zhou Y, Xu J, Zhu Y, Duan Y, Zhou M (2016) Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: interfering with polymerization of monomeric tubulin but not polymerized microtubule. Phytopathology 106:807–813. https://doi.org/10.1094/PHYTO-08-15-0186-R