Cytochrome p450 enzymes in the generation of commercial products

Nature Reviews Drug Discovery - Tập 1 Số 5 - Trang 359-366 - 2002
F. Peter Guengerich1
1Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, 37232-0146, Tennessee, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism, and Biochemistry 2nd edn (Plenum, New York, 1995).This monograph (2nd edition) is still the best single reference collection of general articles about various aspects of P450s.

Guengerich, F. P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611–650 (2001).

Guengerich, F. P. in Cytochrome P450 2nd edn (ed. Ortiz de Montellano, P. R.) 473–535 (Plenum, New York, 1995).

Rendic, S. & Di Carlo, F. J. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 29, 413–580 (1997).

Ito, K., Iwatsubo, T., Kanamitsu, S., Nakajima, Y. & Sugiyama, Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu. Rev. Pharmacol. Toxicol. 38, 461–499 (1998).

Peterson, D. H. Microbial transformations of steroids. I. Introduction of oxygen at carbon-11 of progesterone. J. Am. Chem. Soc. 74, 5933–5936 (1952).

Serizawa, N. et al. Microbial hydroxylation of ML-236B (compactin) and monacolin K (MB-530B). J. Antibiot. (Tokyo) 36, 604–607 (1983).

Falck, J. R. et al. Practical, enantiospecific syntheses of 14,15-EET and leukotoxin B (vernolic acid). Tetrahedron Lett. 42, 4131–4133 (2001).

Shafiee, A. & Hutchinson, C. R. Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis. J. Bacteriol. 170, 1548–1553 (1988).

Andersen, J. F. & Hutchinson, C. R. Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. J. Bacteriol. 174, 725–735 (1992).This is one of several references cited here from Hutchinson's laboratory, describing the CYP reactions that are involved in the biosynthesis of some important antibiotics; see also references 10–13.

Andersen, J. F., Tatsuta, K., Gunji, H., Ishiyama, T. & Hutchinson, C. R. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemistry 32, 1905–1913 (1993).

Shen, B. & Hutchinson, C. R. Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphthacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry 32, 6656–6663 (1993).

Shen, B. & Hutchinson, C. R. Triple hydroxylation of tetracenomycin A2 to tetracenomycin C in Streptomyces glaucescens: overexpression of the tcmG gene in Streptomyces lividans and characterization of the tetracenomycin A2 oxygenase. J. Biol. Chem. 269, 30726–30733 (1994).

Schmidt-Dannert, C. Directed evolution of single proteins, metabolic pathways, and viruses. Biochemistry 40, 13125–13136 (2001).

Powell, K. A. et al. Directed evolution and biocatalysis. Angew. Chem. Int. Edn Engl. 40, 3948–3959 (2001).

Schmidt-Dannert, C. Molecular breeding of carotenoid biosynthetic pathways. Nature Biotechnol. 18, 750–753 (2000).This paper describes an interesting approach to the generation of new forms of natural products through random mutagenesis/screening approaches applied to pathways.

Jennewein, S., Rithner, C. D. Williams, R. M. & Croteau, R. B. Taxol biosyntheis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl Acad. Sci. USA 98, 13595–13600 (2001).

Jannewein, S. & Croteau, R. Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl. Microbiol. Biotechnol. 57, 13–19 (2001).

Schuler, M. A. The role of cytochrome P450 monooxygenases in plant–insect interactions. Plant Physiol. 112, 1411–1419 (1996).

Brodie, A. M. H. Aromatase inhibitors in the treatment of breast cancer. J. Steroid Biochem. Mol. Biol. 49, 281–287 (1994).

Vanden Bossche, H., Koymans, L. & Moereels, H. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol. Ther. 67, 79–100 (1995).

Bailey, D. G., Spence, J. D., Munoz, C. & Arnold, J. M. O. Interaction of citrus juices with felodipine and nifedipine. Lancet 337, 268–269 (1991).

Langouët, S. et al. Inhibition of CYP1A2 and CYP3A4 by oltipraz results in reduction of aflatoxin B1 metabolism in human hepatocytes in primary culture. Cancer Res. 55, 5574–5579 (1995).

Chun, Y.-J., Kim, S., Kim, D., Lee, S.-K. & Guengerich, F. P. A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Res. 61, 8164–8170 (2001).

Guengerich, F. P., Chun, Y.-J. & Kim, D. Cytochrome P450 1B1: A target for inhibition in anticarcinogenesis strategies. Mutation Res. (in the press).

Strömstedt, M., Rozman, D. & Waterman, M. R. The ubiquitously expressed human CYP51 cDNA encodes lanosterol 14α-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch. Biochem. Biophys. 329, 73–81 (1996).

Makita, K., Falck, J. R. & Capdevila, J. H. Cytochrome P450, the arachidonic acid cascade, and hypertension: new vistas for an old enzyme system. FASEB J. 10, 1456–1463 (1996).

Hiroi, T., Imaoka, S. & Funae, Y. Dopamine formation from tyramine by CYP2D6. Biochem. Biophys. Res. Commun. 249, 838–843 (1998).

Bumpus, J. A., Tien, M., Wright, D. & Aust, S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228, 1434–1436 (1985).

Li, S. & Wackett, L. P. Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Commun. 185, 443–451 (1992).

Li, S. & Wackett, L. P. Reductive dehalogenation by cytochrome P450cam: substrate binding and catalysis. Biochemistry 32, 9355–9361 (1993).

Manchester, J. I. & Ornstein, R. L. Enzyme-catalyzed dehalogenation of pentachloroethane: why F87W-cytochrome P450cam is faster than wild type. Protein Eng. 8, 801–807 (1995).

Jones, J. P., O'Hare, E. J. & Wong, L. L. Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450cam). Eur. J. Biochem. 268, 1460–1467 (2001).This recent work from Wong's group is one of the more marked improvements of bacterial CYP101 through rational design for use in bioremediation.

Guengerich, F. P., Kim, D.-H. & Iwasaki, M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem. Res. Toxicol. 4, 168–179 (1991).

Guengerich, F. P. Cytochrome P450 proteins and potential utilization in biodegradation. Environ. Health Perspect. 103 (Suppl. 5), 25–28 (1995).

Li, Q.-S., Schwaneberg, U., Fischer, P. & Schmid, R. D. Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6, 1531–1536 (2000).

Gillam, E. M. J., Notley, L. M., Cai, H., DeVoss, J. J. & Guengerich, F. P. Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39, 13817–13824 (2000).

Farinas, E. T., Schwaneberg, U., Glieder, A. & Arnold, F. H. Directed evolution of a cytochrome P450 monoxygenase for alkane oxidation. Adv. Synth. Catal. 343, 601–606 (2001).This report from Arnold's lab describes the use of bacterial CYP102 as a template for improvement by random mutagenesis for potentially useful applications in octane hydroxylation.

Li, Q.-S. et al. Rational evolution of a medium chain-specific cytochrome P-450 BM-3 mutant. Biochim. Biophys. Acta 1545, 114–121 (2001).

Tijet, N., Schneider, C., Muller, B. L. & Brash, A. R. Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids. Arch. Biochem. Biophys. 386, 281–289 (2001).

Ensley, B. D. et al. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222, 167–169 (1983).

Murdock, D., Ensley, B. D., Serdar, C. & Thalen, M. construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Biotechnology (N Y) 11, 381–386 (1993).

Bialy, H. Biotechnology, bioremediation, and blue genes. Nature Biotechnol. 15, 110 (1997).

Boyd, D. R., Sharma, N. D. & Allen, C. C. R. Aromatic dioxygenases: molecular biocatalysis and applications. Curr. Opin. Biotechnol. 12, 564–573 (2001).

Gillam, E. M. J. et al. Formation of indigo by recombinant mammalian cytochrome P450. Biochem. Biophys. Res. Commun. 265, 469–472 (1999).

Nakamura, K., Martin, M. V. & Guengerich, F. P. Random mutagenesis of cytochrome P450 2A6 and screening with indole oxidation products. Arch. Biochem. Biophys. 395, 25–31 (2001).Human CYP2A6 mutants were selected from biased random libraries and evaluated on the basis of their abilities to produce dyes from indole and synthetic indoles — these dyes can be evaluated as kinase inhibitors.

Adachi, J. et al. Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J. Biol. Chem. 276, 31475–31478 (2001).

Hoessel, R. et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nature Cell Biol. 1, 60–67 (1999).

Leclerc, S. et al. Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. J. Biol. Chem. 276, 251–260 (2001).This paper describes some targets for the indigo derivatives produced in references 36,37,45 and 46 (kinases).

Holton, T. A. et al. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366, 276–279 (1993).

Gillam, E. M. J., Notley, L. M., Devoss, J., Guengerich, F. P. & Volkov, A. A. Pigment production by cells having introduced P450 sequence sequence. AN Patent 152850 (2001).

Mansuy, D. The great diversity of reactions catalyzed by cytochromes P450. Comp. Biochem. C. Pharmacol. Toxicol. Endocrinol. Physiol. 121, 5–14 (1998).

Guengerich, F. P. Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate–cytochrome P-450 reductase. Biochemistry 17, 3633–3639.

Barnes, H. J., Arlotto, M. P. & Waterman, M. R. Expression and enzymatic activity of recombinant cytochrome P450 17α-hydroxylase in Escherichia coli. Proc. Natl Acad. Sci. USA 88, 5597–5601 (1991).

Parikh, A., Gillam, E. M. J. & Guengerich, F. P. Drug metabolism by Escherichia coli expressing human cytochromes P450. Nature Biotechnol. 15, 784–788 (1997).

Guengerich, F. P., Gillam, E. M. J. & Shimada, T. New applications of bacterial systems to problems in toxicology. Crit. Rev. Toxicol. 26, 551–583 (1996).

Loida, P. J. & Sligar, S. G. Engineering cytochrome P-450cam to increase the stereospecificity and coupling of aliphatic hydroxylation. Protein Eng. 6, 207–212 (1993).

Bradshaw, W. H., Conrad, H. E., Corey, E. J., Gunsalus, I. C. & Lednicer, D. Degradation of (+)-camphor. J. Am. Chem. Soc. 81, 5007 (1959).

Bell, S. G., Harford-Cross, C. F. & Wong, L.-L. Engineering the CYP101 system for in vivo oxidation of unnatural substrates. Protein Eng. 14, 797–802 (2001).

Bell, S. G. et al. Butane and propane oxidation by engineered cytochrome P450cam . J. Chem. Soc. Chem. Commun. 490–491 (2002).

Brakmann, S. Discovery of superior enzymes by directed molecular evolution. Chembiochem 2, 865–871 (2001).

Parikh, A., Josephy, P. D. & Guengerich, F. P. Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry 38, 5283–5289 (1999).

Yun, C.-H., Miller, G. P. & Guengerich, F. P. Rate-determining steps in phenacetin oxidations by human cytochrome P450 1A2 and selected mutants. Biochemistry 39, 11319–11329 (2000).

Yun, C.-H. & Guengerich, F. P. Oxidations of p-alkoxyacylanilides by human cytochrome P450 1A2. Biochemistry 40, 4521–4530 (2001).

Joo, H., Lin, Z. L. & Arnold, F. H. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399, 670–673 (1999).This work from Arnold's laboratory involved the use of random mutagenesis of bacterial CYP101 to improve its efficiency in an 'unusual reaction', and involved some innovative screens.

Lindberg, R. L. P. & Negishi, M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 339, 632–634 (1989).

Kronbach, T., Larabee, T. M. & Johnson, E. F. Hybrid cytochromes P-450 identify a substrate binding domain in P-450IIC5 and P-450IIC4. Proc. Natl Acad. Sci. USA 86, 8262–8265 (1989).

Brock, B. J. & Waterman, M. R. The use of random chimeragenesis to study structure/function properties of rat and human P450c17. Arch. Biochem. Biophys. 373, 401–408 (2000).

Farinas, E. T., Bulter, T. & Arnold, F. H. Directed enzyme evolution. Curr. Opin. Biotechnol. 12, 545–551 (2001).

Chen, L. & Waxman, D. J. Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res. 55, 581–589 (1995).

Vaid, T. P. & Lewis, N. S. The use of 'electronic nose' sensor responses to predict the inhibition activity of alcohols on the cytochrome P-450 catalyzed p-hydroxylation of aniline. Bioorg. Med. Chem. 8, 795–805 (2000).

Shumyantseva, V. V. et al. Construction and characterization of bioelectrocatalytic sensors based on cytochromes P450. J. Inorg. Biochem. 87, 185–190 (2001).

Yano, J. K. et al. Crystal structure of a thermophilic cytochrome P450 from the Archaeon Sulfolobus solfataricus. J. Biol. Chem. 275, 31086–31092 (2000).

Park, S.-Y. et al. Crystallization and preliminary X-ray diffraction analysis of a cytochrome P450 (CYP119) from Sulfolobus solfataricus. Acta Crystallogr. D 56, 1173–1175 (2000).

Hodgson, E. Genetically modified plants and human health risks: can additional research reduce uncertainties and increase public confidence? Toxicol. Sci. 63, 153–156 (2001).