Cytochrome P450 diversity in the tree of life

Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics - Tập 1866 Số 1 - Trang 141-154 - 2018
David R. Nelson1
1University of Tennessee Health Science Center, Dept. of Microbiology, Immunology and Biochemistry, 858 Madison Ave. Suite G01, Memphis, TN, 38163, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fujii-Kuriyama, 1982, Primary structure of a cytochrome P-450: coding nucleotide sequence of phenobarbital-inducible cytochrome P-450 cDNA from rat liver, Proc. Natl. Acad. Sci. U. S. A., 79, 2793, 10.1073/pnas.79.9.2793

Waxman, 1982, Phenobarbital-induced rat liver cytochrome P-450. Purification and characterization of two closely related isozymic forms, J. Biol. Chem., 257, 10446, 10.1016/S0021-9258(18)34039-0

Botelho, 1979, Amino acid compositions and partial amino acid sequences of three highly purified forms of liver microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls, phenobarbital, or 3-methylcholanthrene, J. Biol. Chem., 254, 5635, 10.1016/S0021-9258(18)50461-0

Ozols, 1981, Amino acid sequence of an analogous peptide from two forms of cytochrome P-450, J. Biol. Chem., 256, 11405, 10.1016/S0021-9258(19)68411-5

Nelson, 2009, The cytochrome P450 homepage, Hum. Genet., 4, 59

Matasci, 2014, Data access for the 1,000 plants (1KP) project, Gigascience, 3, 17, 10.1186/2047-217X-3-17

Wickett, 2014, Phylotranscriptomic analysis of the origin and early diversification of land plants, Proc. Natl. Acad. Sci. U. S. A., 111, E4859, 10.1073/pnas.1323926111

Xie, 2014, SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads, 1660

Johnson, 2012, Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes, PLoS One, 7, 10.1371/journal.pone.0050226

Grigoriev, 2014, MycoCosm portal: gearing up for 1000 fungal genomes, Nucleic Acids Res., 42, D699, 10.1093/nar/gkt1183

http://genome.jgi.doe.gov/programs/fungi/index.jsf (accessed March 21, 2017).

Richards, 2015, It's more than stamp collecting: how genome sequencing can unify biological research, Trends Genet., 31, 411, 10.1016/j.tig.2015.04.007

Margulis, 1998

Koutsovoulos, 2016, No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini, Proc. Natl. Acad. Sci. U. S. A., 113, 5053, 10.1073/pnas.1600338113

Amborella Genome Project, 2013, The Amborella genome and the evolution of flowering plants, Science, 342, 10.1126/science.1241089

Jarvis, 2014, Whole-genome analyses resolve early branches in the tree of life of modern birds, Science, 346, 1320, 10.1126/science.1253451

Prum, 2015, A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing, Nature, 526, 569, 10.1038/nature15697

Mundy, 2016, Red carotenoid coloration in the zebra finch is controlled by a cytochrome P450 gene cluster, Curr. Biol., 26, 1435, 10.1016/j.cub.2016.04.047

Lopes, 2016, Genetic basis for red coloration in birds, Curr. Biol., 26, 1427, 10.1016/j.cub.2016.03.076

Twyman, 2016, Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles, Proc. Biol. Sci., 283

Claeys, 1981, Lack of prostacyclin biosynthesis by aortic tissue of the chicken, Prostaglandins, 1981, 739, 10.1016/0090-6980(81)90231-8

Bult, 1981, Prostanoids and hemostasis in chickens: anti-aggregating activity of prostaglandins E1 and E2, but not of prostacyclin and prostaglandin D2, Prostaglandins, 21, 1045, 10.1016/0090-6980(81)90172-6

de Matos, 2008, Adrenal steroid metabolism in birds: anatomy, physiology, and clinical considerations, Vet. Clin. North Am. Exot. Anim. Pract., 11, 35, 10.1016/j.cvex.2007.09.006

Adams, 2000, The genome sequence of Drosophila melanogaster, Science, 287, 2185, 10.1126/science.287.5461.2185

Fortey, 2012

Maas, 2007, A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction, Chin. Sci. Bull., 52, 3385, 10.1007/s11434-007-0515-3

Hering, 2012, Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods, Mol. Biol. Evol., 29, 3451, 10.1093/molbev/mss148

Kohler, 2015, Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists, Nat. Genet., 47, 410, 10.1038/ng.3223

Arvas, 2007, Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina, BMC Genomics, 8, 325, 10.1186/1471-2164-8-325

Deng, 2007, The evolutionary history of cytochrome P450 genes in four filamentous Ascomycetes, BMC Evol. Biol., 7, 30, 10.1186/1471-2148-7-30

Moktali, 2012, Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes, BMC Genomics, 13, 525, 10.1186/1471-2164-13-525

Nelson, 2011, A P450-centric view of plant evolution, Plant J., 66, 194, 10.1111/j.1365-313X.2011.04529.x

https://genome10k.soe.ucsc.edu/news/article/27 (Accessed March 21, 2017).

Nelson, 1987, Evolution of cytochrome P-450 proteins, Mol. Biol. Evol., 4, 572

Nelson, 1998, Metazoan cytochrome P450 evolution, Comp. Biochem. Physiol. C, 121, 15

Nelson, 1999, Cytochrome P450 and the individuality of species, Arch. Biochem. Biophys., 369, 1, 10.1006/abbi.1999.1352

Nelson, 2012, The cytochrome P450 genesis locus and the origin of animal cytochrome P450s, Philos. Trans. R. Soc. B, 368

Lee, 2008, Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes, Nature, 455, 363, 10.1038/nature07307

Nelson, 2006, Plant cytochrome P450s from moss to poplar, Phytochem. Rev., 5, 193, 10.1007/s11101-006-9015-3

Sello, 2015, Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes, Sci. Rep., 5, 11572, 10.1038/srep11572

Ren, 2016, Phylogenetic resolution of deep eukaryotic and fungal relationships using highly conserved low-copy nuclear genes, Genome Biol. Evol., 8, 2683, 10.1093/gbe/evw196

Burki, 2016, Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista, Proc. Biol. Sci., 283

Katz, 2015, Taxon-rich phylogenomic analyses resolve the eukaryotic tree of life and reveal the power of subsampling by sites, Syst. Biol., 64, 406, 10.1093/sysbio/syu126

Adl, 2012, The revised classification of eukaryotes, J. Eukaryot. Microbiol., 59, 429, 10.1111/j.1550-7408.2012.00644.x

Derelle, 2015, Bacterial proteins pinpoint a single eukaryotic root, Proc. Natl. Acad. Sci. U. S. A., 112, E693, 10.1073/pnas.1420657112

Burki, 2016, Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista, Proc. Biol. Sci., 283

Feyereisen, 2011, Arthropod CYPomes illustrate the tempo and mode in P450 evolution, Biochim. Biophys. Acta, 1814, 19, 10.1016/j.bbapap.2010.06.012

Tomazic, 2014, Incomplete sterols and hopanoids pathways in ciliates: gene loss and acquisition during evolution as a source of biosynthetic genes, Mol. Phylogenet. Evol., 74, 122, 10.1016/j.ympev.2014.01.026

Goldstone (mollusks) this issue.

Ruggiero, 2015, A higher level classification of all living organisms, PLoS One, 10, 10.1371/journal.pone.0119248

Berbee, 2010, Dating the molecular clock in fungi – how close are we?, Fungal Biol. Rev., 24, 1, 10.1016/j.fbr.2010.03.001