Cysteine-anchored receptor on carbon nanoparticles for dopamine sensing

Electrochimica Acta - Tập 123 - Trang 362-368 - 2014
Mandana Amiri1, Hadi Eynaki1, Yaghoub Mansoori1
1Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran

Tài liệu tham khảo

Lu, 2012, Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes:A first principle analysis, J.Solid State Chem., 196, 367, 10.1016/j.jssc.2012.06.034 Li, 2008, Sensors and actuators based on carbon nanotubes and their composites: A review, Compos. Sci. and Technol., 68, 1227, 10.1016/j.compscitech.2008.01.006 Kochmann, 2012, Graphenes in chemical sensors and biosensors, TrAC Trends Anal. Chem., 39, 87, 10.1016/j.trac.2012.06.004 Shahrokhian, 2010, Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan, Microchim. Acta, 170, 141, 10.1007/s00604-010-0373-6 A. Celebanska, D., Tomaszewska, A, Lesniewski, M. Opallo,. Film electrode prepared from oppositely charged silicate submicroparticles and carbon nanoparticles for selective dopamine sensing, Biosens. Bioelectron. 11 (2011) 4417-22. Amiri, 2007, Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes, Anal. Chim. Acta, 593, 117, 10.1016/j.aca.2007.04.042 Shahrokhian, 2009, Electrochemical study of Azathioprine at thin carbon nanoparticle composite film electrode, Electrochem. Commun., 11, 1425, 10.1016/j.elecom.2009.05.025 Amiri, 2012, Carbon nanoparticle–chitosan composite electrode with anion, cation, and neutral binding sites: Dihydroxybenzene selectivity, Sens. and Actuators B, 162, 194, 10.1016/j.snb.2011.12.066 Allongue, 1997, Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, J. Am. Chem. Soc., 119, 201, 10.1021/ja963354s Downard, 2000, Electrochemically assisted covalent modification of carbon electrodes: review, Electroanal., 14, 1085, 10.1002/1521-4109(200010)12:14<1085::AID-ELAN1085>3.0.CO;2-A Colavita, 2008, Photo-induced Surface Functionalization of Carbon Surfaces: The Role of Photoelectron Ejection, J.Vac. Sci. Technol. A, 26, 925, 10.1116/1.2908435 Pust, 2009, Electro-oxidative nanopatterning of silane monolayers on boron-doped diamond electrodes, Nanotech., 20, 075302, 10.1088/0957-4484/20/7/075302 Watkins, 2010, Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate to positively charged sulfonamide, Phys, Chem. Chem. Phys., 12, 4872, 10.1039/b927434k Watkins, 2011, Carbon Nanoparticle Surface Electrochemistry: High-Density Covalent Immobilisation and Pore-Reactivity of 9, 10- Anthraquinone, Electroanal., 23, 1320, 10.1002/elan.201100051 Lawrence, 2012, Dioctylamine-Sulfonamide-Modified Carbon Nanoparticles as High Surface Area Substrates for Coenzyme Q10-Lipid Electrochemistry, Electroanal., 24, 1003, 10.1002/elan.201200121 Senthil Kumar, 2006, Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode, J Solid State Electrochem., 10, 905, 10.1007/s10008-005-0041-7 Lu, 2008, Microdetermination of human serum albumin by differential pulse voltammetry at a L-cysteine modified silver electrode, J. Chem. Sci., 120, 419, 10.1007/s12039-008-0066-4 Song, 2011, L-cysteine-nano-gold modified glassy carbon electrode and its application for determination of DA hydrochloride, Indian J. Chem., 50A, 1006 Martínez-Huitlea, 2009, Electrochemical Behavior of Dopamine at Covalent Modified Glassy Carbon Electrode with L-Cysteine: Preliminary Results, Mater. Res., 12, 375, 10.1590/S1516-14392009000400002 Kalimuthu, 2011, Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using polymer film modified electrode, J. Chem. Sci., 123, 349, 10.1007/s12039-011-0086-3 Kakade, 2002, Dopamine: generalization and bonuses, Neural Networks, 15, 549, 10.1016/S0893-6080(02)00048-5 Zhang, 2002, Capillary electrophoresis with wavelength-resolved laser-inducedfluorescence detection, Anal. Bioanal. Chem., 373, 332, 10.1007/s00216-002-1288-9 Carrea, 2007, A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, DA and 5 hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures, J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 1, 847, 88 M.R. Hormozi Nezhada,b, J., Tashkhourianc, J. Khodaveisic, Sensitive Spectrophotometric Detection of Dopamine, Levodopa and Adrenaline UsingSurface Plasmon Resonance Band of Silver Nanoparticles, J. Iran. Chem. Soc., 7 (2010) S83-S91. Adekunlea, 2010, Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform, Sens. Actuators B, 148, 93, 10.1016/j.snb.2010.03.088 Chandrashekara, 2011, Electropolymerisation of l-arginine at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, Colloids Surf. B: Biointerfaces, 88, 413, 10.1016/j.colsurfb.2011.07.023 Zhao, 2005, Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode, Talanta, 66, 51, 10.1016/j.talanta.2004.09.019 Wang, 2012, Glassy carbon electrode modified with poly (dibromofluorescein) for the selective determination of dopamine and uric acid in the presence of ascorbic acid, Microchim. Acta, 178, 123, 10.1007/s00604-012-0821-6 Ge, 2009, Selective detection of dopamine based on the unique property of gold nanofilm, J. Electroanal. Chem., 633, 182, 10.1016/j.jelechem.2009.05.010 Sheng-fu, 2002, Electrochemical behavior of epinephrine at l-cysteine self-assembled monolayers modified gold electrode, Talanta, 57, 687, 10.1016/S0039-9140(02)00072-3 Shindo, 1965, Infrared Spectra of Complexes of L-Cysteine and Related Compounds with Zinc (II), Cadmium (II), Mercury (II),and Lead (II). J. Am. Chem. Soc., 87, 1904, 10.1021/ja01087a013 Barth, 2000, The infrared absorption of amino acid side chains, Progress in Biophysics & Molecular Biology, 74, 141, 10.1016/S0079-6107(00)00021-3 Susi, 1983, Vibrational analysis of amino acids: Cysteine, Serine, β-Chloroalanine, J. Mol. Struc, 102, 63, 10.1016/0022-2860(83)80007-6 Atta, 2012, A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate, Analyst, 137, 2658, 10.1039/c2an16210e