Cylindrical-sinc beam
Tài liệu tham khảo
Durnin, 1987, Diffraction-free beams, Phys. Rev. Lett., 58, 1499, 10.1103/PhysRevLett.58.1499
Durnin, 1986, Exact Solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am., 4, 651, 10.1364/JOSAA.4.000651
Rubinowicz, 1957, The theory of diffraction, Nature, 4, 162
Maggi, 1888, Sulla propagazione libera e perturbata delle onde luminose in un mezzo isotropo, Ann. Mat. Pur. Appl., 16, 21, 10.1007/BF02420290
Rubinowicz, 1917, Die beugungswelle in der Kirchoffschen theorie der beugungserscheinungen, Ann. Phys., 358, 257, 10.1002/andp.19173581202
Otis, 1974, Application of the boundary-diffraction-wave theory to Gaussian beams, J. Opt. Soc. Am., 64, 1545, 10.1364/JOSA.64.001545
Ganci, 1995, A general scalar solution for the half plane problem, J. Mod. Opt., 42, 1707, 10.1080/09500349514551491
Ganci, 1996, Half plane diffraction in a case of oblique incidence, J. Mod. Opt., 43, 2543, 10.1080/09500349608230680
Başdemir, 2013, Impedance surface diffraction analysis for a strip with the boundary diffraction wave theory, Optik, 124, 627, 10.1016/j.ijleo.2011.12.031
Horvath, 2004, Experimental investigation of the boundary wave pulse, Opt. Commun., 239, 243, 10.1016/j.optcom.2004.05.045
Kumar, 2007, Direct visualization of Young's boundary diffraction wave, Opt. Commun., 276, 54, 10.1016/j.optcom.2007.04.009
Keller, 1961, Geometrical theory of diffraction, J. Opt. Soc. Am., 52, 116, 10.1364/JOSA.52.000116
Hocter, 2000, Sound radiated from a cylindrical duct with Keller's geometrical theory, J. Sound Vib., 231, 1243, 10.1006/jsvi.1999.2739
Jin, 2008, Computational high frequency waves through curved interfaces via the Liouville equation and geometrical theory of diffraction, J. Comput. Phys., 227, 6106, 10.1016/j.jcp.2008.02.029
Umul, 2009, Rigorous expressions for the equivalent edge currents, Prog. Electromagn. Res. B., 15, 77, 10.2528/PIERB09040104
James, 1994
Umul, 2008, The effect of impedance boundary conditions on the potential function of the boundary diffraction wave theory, Opt. Commun., 281, 23, 10.1016/j.optcom.2007.09.010