Cyclotomy and endomotives

Matilde Marcolli1
1Dept of Mathematics, California Institute of Technology, Pasadena, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. E. Andersen, “Witten invariant of finite order mapping tori, I” unpublished manuscript, 1995.

R.W. Bell and D. Margalit, “Braid groups and the co-Hopfian property,” J. Algebra 303(1), 275–294 (2006).

S. J. Bigelow, “Braid groups are linear,” J. Amer. Math. Soc. 14(2), 471–486 (2001).

J. S. Birman and W.W. Menasco, “Studying links via closed braids I: a finiteness theorem,” Pacific J. Math. 154(1), 17–36 (1992).

J. S. Birman and W. W. Menasco, “Stabilization in the braid group I: MTWS,” Geom. Top. 10, 413–540 (2006).

J. S. Birman and W. W. Menasco, “Studying links via closed braids IV: composite links and split links,” Invent. Math. 102, 115–139 (1990).

J. Borger, “Λ-rings and the field with one element,” preprint 2009.

J. Borger, “The basic geometry of Witt vectors,” arXiv:0801.1691.

J. Borger and B. de Smit, “Galois theory and integral models of Λ-rings,” arXiv:0801.2352.

J. Borger and B. Wieland, “Plethystic algebra,” Adv. Math. 194(2), 246–283 (2005).

J. B. Bost and A. Connes, “Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory,” SelectaMath. (N.S.) 1(3), 411–457 (1995).

A. Connes, “Trace formula in noncommutative geometry and the zeros of the Riemann zeta function,” Selecta Math. (N.S.) 5(1), 29–106 (1999).

A. Connes, “Cohomologie cyclique et foncteurs Ext n,” C. R. Acad. Sci. Paris, Sér. I Math. 296(23), 953–958 (1983).

A. Connes, C. Consani and M. Marcolli, “Noncommutative geometry and motives: the thermodynamics of endomotives,” Adv. Math. 214(2), 761–831 (2007).

A. Connes, C. Consani and M. Marcolli, “The Weil proof and the geometry of the adeles class space,” arXiv:math/0703392.

A. Connes, C. Consani and M. Marcolli, “Fun with % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv % 39gaiyaacqWFfcVrdaWgaaWcbaGaeGymaedabeaaaaa!48D8! $$ \mathbb{F}_1 $$ ,” to appear in J. Number Theory.

A. Connes and C. Consani, “On the notion of geometry over % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv % 39gaiyaacqWFfcVrdaWgaaWcbaGaeGymaedabeaaaaa!48D8! $$ \mathbb{F}_1 $$ ,” arXiv:0809.2926.

A. Connes and C. Consani, “Schemes over % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv % 39gaiyaacqWFfcVrdaWgaaWcbaGaeGymaedabeaaaaa!48D8! $$ \mathbb{F}_1 $$ and zeta functions,” arXiv:0903.2024.

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields, and Motives, Colloquium Publ. 55 (Amer.Math. Soc., 2008).

A. Connes and M. Marcolli, “Quantum statistical mechanics of ℚ-lattices,” in Frontiers in Number Theory, Physics, and Geometry, I pp. 269–350 (Springer Verlag, 2006).

A. Connes, M. Marcolli and N. Ramachandran, “KMS states and complex multiplication,” Selecta Math. (N.S.) 11(3–4), 325–347 (2005).

A. Connes, M. Marcolli and N. Ramachandran, “KMS states and complex multiplication. II,” in Operator Algebras: The Abel Symposium 2004, pp. 15–59, Abel Symp. 1 (Springer, Berlin, 2006).

C. Consani and M. Marcolli, “Quantum statistical mechanics over function fields,” J. Number Theory 123(2), 487–528 (2007).

W. Fulton and S. Lang, Riemann-Roch Algebra (Springer, 1985).

S. Garoufalidis and J. Levine, “Homology surgery and invariants of 3-manifolds,” Geom. Top. 5, 551–578 (2001).

N. Geer, B. Patureau-Mirand and V. Turaev, “Modified quantum dimensions and re-normalized link invariants,” arXiv:0711.4229 [math.QA]

A. Grothendieck, “La théorie des classes de Chern,” Bull. Soc. Math. France 86, 137–154 (1958).

E. Ha and F. Paugam, “Bost-Connes-Marcolli systems for Shimura varieties. I. Definitions and formal analytic properties,” Int. Math. Res. Pap. 5, 237–286 (2005).

N. Habegger, “On surgery equivalence of braids,” XI Brazilian Topology Meeting (Rio Claro, 1998), pp. 33–40 (World Sci. Publ., River Edge, NJ, 2000).

K. Habiro, “Cyclotomic completions of polynomial rings,” Publ. RIMS Kyoto Univ. 40, 1127–1146 (2004).

K. Habiro, “A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres,” Invent. Math. 171, 1–81 (2008).

K. Habiro, “Refined Kirby calculus for integral homology spheres,” Geom. Top. 10, 1285–1317 (2006).

S. K. Hansen, “Reshetikhin-Turaev invariants of Seifert 3-manifolds and a rational surgery formula,” Alg. Geom. Top. 1, 627–686 (2001).

M. J. Shai Haran, “Non-additive geometry,” Compositio Math. 143, 618–688 (2007).

J. Hoste, “A formula for Casson’s invariant,” Trans. Amer.Math. Soc. 297 (1986) 547–562.

V. F. R. Jones, “Hecke algebra representations of braid groups and link polynomials,” Ann. Math. 126, 335–388 (1987).

M. Kapranov and A. Smirnov, “Cohomology determinants and reciprocity laws,” unpublished manuscript.

K. Kawamuro, The Algebraic Crossing Number and the Braid Index of Knots and Links, PhD Thesis (Columbia University, 2006).

R. Kirby and P. Melvin, “The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2,C),” Invent. Math. 105, 473–545 (1991).

N. Kurokawa, “Multiple sine functions and Selberg zeta functions,” Proc. Jpn. Acad., Ser. A Math. Sci. 67(3), 61–64 1991.

R. Lawrence and L. Rozansky, “Witten-Reshetikhin-Turaev invariants of Seifert manifolds,” Commun. Math. Phys. 205(2), 287–314 (1999).

J. Levine, “Surgery on links and the % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaaccaGaf8hVd0Mbaebaaaa!3DAA! $$ \bar \mu $$ -invariants,” Topology 26(1), 45–61 (1987).

J. Lopez-Pena and O. Lorscheid, “Torified varieties and their geometries over % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv % 39gaiyaacqWFfcVrdaWgaaWcbaGaeGymaedabeaaaaa!48D8! $$ \mathbb{F}_1 $$ ,” arXiv:0903.2173.

Yu. I. Manin, “Cyclotomy and analytic geometry over % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXguY9 % gCGievaerbd9wDYLwzYbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyav % P1wzZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv % 39gaiyaacqWFfcVrdaWgaaWcbaGaeGymaedabeaaaaa!48D8! $$ \mathbb{F}_1 $$ ,” arXiv:0809.1564.

Yu. I. Manin, “Lectures on zeta functions and motives (according to Deninger and Kurokawa),” Astérisque 228(4), 121–163 (1995).

M. Marcolli and A. Zainy al-Yasry, “Coverings, correspondences, and noncommutative geometry,” J. Geom. Phys. 58(12), 1639–1661 (2008).

J. Morava, Private communication, March 2009.

V. V. Prasolov and A. B. Sossinsky, Knots, Links, Braids and 3-Manifolds (American Math. Society, 1997).

J. Preskill, Quantum Information and Computation, Lect. Notes Phys. 229, California Inst. Technol. Manuscript available from the author’s website.

N. Reshetikhin and V. Turaev, “Invariants of 3-manifolds via link polynomials and quantum groups,” Invent. Math. 103(3), 547–597 (1991).

D. Rolfsen, “Rational surgery calculus: extension of Kirby’s theorem,” Pacific J. Math. 110(2), 377–386 (1984).

C. Soulé, “Les variétés sur le corps à un élément,” Mosc. Math. J. 4(1), 217–244 (2004).

T. Terasoma, “Rational convex cones and cyclotomic multiple zeta values,” arXiv:math.AG/0410306.

H. Wenzl, “Braids and invariants of 3-manifolds,” Invent. Math. 114, 235–275 (1993).

C. Wilkerson, “Lambda-rings, binomial domains, and vector bundles over ℂℙ(∞),” Comm. Algebra 10, 311–328 (1982).

R. F. Williams, “The braid index of generalized cables,” Pacific J. Math. 155(2), 369–375 (1992).

E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys. 121(3), 351–399 (1989).

D. N. Yetter, “Markov algebras,” in Braids (Santa Cruz, CA, 1986), Contemp. Math. 78, 705–730 (1988).