Cyclic elastic modulus and low cycle fatigue life of woven-type GFRP coated aluminum plates

Composites Part B: Engineering - Tập 174 - Trang 107004 - 2019
Nohjun Myung1, Jihye Seo2, Nak-Sam Choi3
1Department of Mechanical Engineering, Graduate School, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
2Department of Mechanical Design Engineering, Graduate School, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
3Department of Mechanical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea

Tài liệu tham khảo

Sinmazçelik, 2011, A review: fibre metal laminates, background, bonding types and applied test methods, Mater Des, 32, 3671, 10.1016/j.matdes.2011.03.011 Alderliesten, 2016, Fatigue of fibre metal laminates, Reference Module in Mater Sci Mater Eng, 1 Yoon, 1995, A Study on Characteristics of tensile strength and fatigue life with hybrid composite materials for aircraft, 213 Yoon, 2007, Influence of fiber orientation and volume fraction on tensile strength and fatigue life of CARALL hybrid composite, Key Eng Mater, 353–358, 1455, 10.4028/www.scientific.net/KEM.353-358.1455 Kawai, 2006, Effects of R-ratio on the off-axis fatigue behavior of unidirectional hybrid GFRP/Al laminates at room temperature, Int J Fatigue, 28, 1226, 10.1016/j.ijfatigue.2006.02.020 Kawai, 2002, Two-stress level fatigue of unidirectional fiber-metal hybrid composite: GLARE 2, Int J Fatigue, 24, 567, 10.1016/S0142-1123(01)00108-6 Deniz, 2019, Determination of fatigue life of the unidirectional GFRP/Al hybrid composite laminates, Compos B Eng, 166, 580, 10.1016/j.compositesb.2019.02.060 Alderliesten, 2009, Understanding the fatigue behavior of FML structures and materials under complex variable amplitude loading, 1 Dadej, 2017, Residual fatigue life of carbon fibre aluminium laminates, Int J Fatigue, 100, 94, 10.1016/j.ijfatigue.2017.03.026 Dadej, 2018, Isostrain elastoplastic model for prediction of static strength and fatigue life of fiber metal laminates, Int J Fatigue, 110, 31, 10.1016/j.ijfatigue.2018.01.009 Chang, 2008, Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates, Mater Sci Eng A, 496, 273, 10.1016/j.msea.2008.07.041 Stoll, 2018, Fatigue of fiber-metal-laminates with aluminum core, CFRP face sheets and elastomer interlayers (FMEL), Int J Fatigue, 107, 110, 10.1016/j.ijfatigue.2017.10.017 Alderliesten, 2008, The applicability of magnesium based Fibre Metal Laminates in aerospace structures, Compos Sci Technol, 68, 2983, 10.1016/j.compscitech.2008.06.017 Sivakumar, 2017, Investifation on fatigue life behavior of sustainable bio-based fibre metal laminate, JMechE, 1, 123 Armentani, 2011, FML full scale aeronautic panel under multiaxial fatigue: experimental test and DBEM Simulation, Eng Fract Mech, 78, 1717, 10.1016/j.engfracmech.2011.02.020 Vogelesang, 2000, Development of fibre metal laminates for advanced aerospace structures, J Mater Process Technol, 103, 1, 10.1016/S0924-0136(00)00411-8 Lin, 1991, Fatigue behavior of carbon fibre-reinforced aluminum laminates, Composites, 22, 135, 10.1016/0010-4361(91)90672-4 Cortes, 2005, The fracture properties of a fibre–metal laminate based on magnesium alloy, Compos B Eng, 37, 163, 10.1016/j.compositesb.2005.06.002 Monfared, 2008, CFRP rein-forcing to extend the fatigue lives of steel structures, 1 Rhee, 2008, Fatigue crack growth behavior of the thin-to-thick type stiffened panels with bonded patch, J Ocean Eng Technol, 22, 89 Khan, 2009, Post-stretching induced stress redistribution in Fibre Metal Laminates for increased fatigue crack growth resistance, Compos Sci Technol, 69, 396, 10.1016/j.compscitech.2008.11.006 Ergun, 2010, Fatigue and fracture analysis of aluminum plate with composite patches under the hygrothermal effect, Compos Struct, 92, 2622, 10.1016/j.compstruct.2010.03.015 Yoon, 1999, A study on fatigue crack retardation using NDT test in a hybrid composite material reinforced with a CFRP, COMPOS RES, 12, 1 Emami, 2009, Cyclic deformation behavior of a cast aluminum alloy, Mater Sci Eng A, 516, 31, 10.1016/j.msea.2009.04.037 Xiang, 2017, Ultra-low cycle fatigue life of aluminum alloy and its prediction using monotonic tension test results, Eng Fract Mech, 186, 449, 10.1016/j.engfracmech.2017.11.006 Kumar, 2018, The influence of metallurgical factors on low cycle fatigue behavior of ultra-fine grained 6082 Al alloy, Int J Fatigue, 110, 130, 10.1016/j.ijfatigue.2018.01.018 Li, 2019, Ultrafine versus coarse grained Al 5083 alloys: from low-cycle to very-high-cycle fatigue, Int J Fatigue, 121, 84, 10.1016/j.ijfatigue.2018.12.004 Luk, 2015, Low cycle fatigue of SiCp reinforced AA2009 composites, Mater Des, 66, 274, 10.1016/j.matdes.2014.10.070 Srivatsan, 1992, The low-cycle fatigue behavior of an aluminium-alloy-ceramic-partical composite, Int J Fatigue, 14, 173, 10.1016/0142-1123(92)90371-I Jung, 2009, Aluminum-GFRP hybrid square tube beam reinforced by a thin composite skin layer, Compos Part A Appl Sci Manuf, 40, 1558, 10.1016/j.compositesa.2009.06.015 Coffin, 1954, A study of the effects of cyclic thermal stress on a ductile metal, Trans ASME, 76, 931 Halford, 1966, The energy required for fatigue, J Mater, 1, 3 Ellyin, 1984, Plastic strain in fatigue failure, J Press Vessel Technol, 106, 342, 10.1115/1.3264362 Ellyin, 1985, An energy-based fatigue failure criterion, Microstruct Mech Behav Mater, 2, 541 Ellyin, 1985, Effect of tensile-mean-strain on plastic strain energy and cyclic response, J Eng Mater Technol, 107, 119, 10.1115/1.3225786 Wittke, 1997, Description of stress-strain hysteresis loops with a simple approach, Int J Fatigue, 19, 141, 10.1016/S0142-1123(96)00059-X Oh, 2016, Fatigue life analysis and prediction of 316L stainless steel under low cycle fatigue loading, Trans Korean Soc Mech Eng A, 40, 1027, 10.3795/KSME-A.2016.40.12.1027 Basquin, 1910, The experimental law of endurance tests, Am Soc Test Mater, 10, 625